教員採用試験 - 質問解決D.B.(データベース) - Page 2

教員採用試験

18和歌山県教員採用試験(数学:4番 無理数の証明)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$2^x=5$をみたす実数$x$は
無理数であることを示せ.
この動画を見る 

15三重県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=2,b_1=4$,
$a_{n+1}=3a_n+2b_n$
$b_{n+1}=4a_n+5b_n$
一般項$a_n,b_n$を求めよ.
この動画を見る 

10三重県教員採用試験(数学:6-(2) 極限,平均値の定理)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}-(2)$
$\displaystyle \lim_{x\to 0}\dfrac{\sin (sin x)-\sin x}{\sin x-x}$の
極限値を求めよ.
この動画を見る 

09和歌山県教員採用試験(数学:2番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a_1=1,a_{n+1}=\dfrac{a_n}{4a_n+3}$
一般項$a_n$を求めよ.
この動画を見る 

練習問題37 数検1級1次 高専数学 教採 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x \leqq 2,x \leqq y \leqq 2$
$ \displaystyle \iint_D e^{y^2} dx \ dy$を計算せよ.
この動画を見る 

10三重県教員採用試験(数学:6-(1) 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}(1)$
$\displaystyle \lim_{x\to 0}\dfrac{1-e^{x^3}}{x^2 \log(1+3x)}$
の極限値を求めよ.
この動画を見る 

06滋賀県教員採用試験(数学:1-(3) 関数のグラフ)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
この動画を見る 

06滋賀県教員採用試験(数学:5番 対数の性質)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$x,y$:正の整数である.
$x^2$が7桁,$xy^3$が20桁になるとき,
$x,y$は何桁であるか求めよ.
この動画を見る 

14三重県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$a_1=7,a_{n+1}=2a_n-2n-1$
一般項を求めよ.
この動画を見る 

12三重県教員採用試験(数学:7番 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{x\to 2}\dfrac{1}{x\to 2} \displaystyle \int_{2}^{x} t^4e^t dt$
の極限値を求めよ.
この動画を見る 

09三重県教員採用試験(数学:4番 不等式)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$\log_{10} ({n}_n \mathrm{C}_0+{n}_n \mathrm{C}_1+・・・・・・+{n}_n \mathrm{C}_n)\gt 4$
をみたす最小の自然数$n$を求めよ.
この動画を見る 

06滋賀県教員採用試験(数学:6番 面積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
曲線$\sqrt x+\sqrt y=1,$
$x$軸,$y$軸で囲まれた部分の面積を求めよ.
この動画を見る 

20三重県教員採用試験(数学:1-(3) 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x \geq 3,y \geq \dfrac{1}{3},xy^2=243$
のとき
$\left(\log_3 x\right)\left(\log_3 y\right)$
の最大値,最小値を求めよ.
この動画を見る 

21三重県教員採用試験(数学:1-(3) 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x^3+ax^2+bx+21=0$の1つの解が
$x=2+\sqrt3 i$のとき
$a,b$の値と実数解を求めよ.
この動画を見る 

18滋賀県教員採用試験(数学:4番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f'(x)$:連続,$f(0)=1$
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g''(x)$
をみたす$f(x),g(x)$を求めよ.
この動画を見る 

12高知県教員採用試験(数学:3番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$a_1=-50,9a_{n+1}=a_n+\dfrac{4}{3^n}$

(1)一般項$a_n$を求めよ.
(2)$a_n$を最大にする$n$の値を求めよ.
この動画を見る 

18兵庫県教員採用試験(数学:3 -(2) 解の個数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$\vert x^2-2x-3 \vert =a(x+1)+2$
が異なる3個の実数解をもつような
$a$の値を求めよ.
この動画を見る 

05高知県教員採用試験(数学:3-(2) 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}-(2)$
$z=1+\sqrt3 i$のとき,
$1+z+z^2+z^3+z^4+z^5$の値を求めよ.
この動画を見る 

17滋賀県教員採用試験(数学:4番 剰余の定理系)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f(x)=x^3+ax+b$が$(x-2)^2$で割り切れる.
$a,b$の値を求めよ.
この動画を見る 

09兵庫県教員採用試験(数学:5番 面積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
曲線$y=\vert x \vert \sqrt{2x+1}$
と$x$軸で囲まれた部分の面積を求めよ.
この動画を見る 

11和歌山県教員採用試験(数学:1-(6) 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$
$\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1$
を満たす正の整数の組$(x,y,z)$を
求めよ.
ただし,$x\lt y\lt z$とする.
この動画を見る 

21滋賀県教員採用試験(数学:5番 接線の本数)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
$a$は実数である.
点$(a,0)$を通る曲線
$y=(2-x)e^x$の接線の本数を求めよ.
この動画を見る 

14和歌山県教員採用試験(数学:3番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
(i)$f`(x):$連続
(ii)$f(x)=\displaystyle \int_{1}^{x} (x-t)f`(t)dt+3x+1$
(iii)(ii)をみたす$f(x)$を求めよ.
この動画を見る 

20滋賀県教員採用試験(数学:6番 空間ベクトル)

アイキャッチ画像
単元: #その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
点$A(1,2,-3)$を通り
$\vec{ a }=(3,-1,2)$に平行な直線を$\ell$とする.
点$B(4,-3,1)$を通り
$\vec{b}=(3,7,-2)$に平行な直線を$m$とする.
$\ell$と$m$の交点の座標を求めよ.
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 

12和歌山県教員採用試験(数学:1-(5) 相加・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
この動画を見る 

17和歌山県教員採用試験(数学:1-(5) 確率)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
サイコロを3回投げ,
出た目を順に$a,b,c$とする.
$abx^2-12x+c=0$が
重解をもつ確率を求めよ.
この動画を見る 

17和歌山県教員採用試験(数学:1-(6) 展開した係数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$(x^2+2x-1)^6$において
$x^4$の係数を求めよ.
この動画を見る 

11和歌山県教員採用試験(数学:4番 微分と微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$f(x)$:微分可能
任意の実数$x,y$に対して
$f(x+y)=f(x),f(y),f`(0)=2$

(1)$f(0)$を求めよ.
(2)$f(x)$を求めよ.
この動画を見る 

08岡山県教員採用試験(数学:1-(4) 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\dfrac{dy}{dx}=\dfrac{y(x-1)}{x}$
をみたす曲線で$(1,1)$を通る方程式を求めよ.
この動画を見る 
PAGE TOP