実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
大阪市立大 奇数の和 奇数の平方の和
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
この動画を見る
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$
①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.
2021大阪市立大過去問
ペアを作ろう!!A 大阪教育大学附属池田 洛南
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{1} \times \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} =$
大阪教育大学附属高等学校池田校舎
この動画を見る
$\sqrt{1} \times \sqrt{2} \times \sqrt{3} \times \sqrt{4} \times \sqrt{5} \times \sqrt{6} \times \sqrt{7} \times \sqrt{8} \times \sqrt{9} \times \sqrt{10} =$
大阪教育大学附属高等学校池田校舎
√6…
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{6\sqrt{6\sqrt{6 \cdots}}}$
この動画を見る
$\sqrt{6\sqrt{6\sqrt{6 \cdots}}}$
ルートを外せ11 B 2021 中央大附属
単元:
#数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
この動画を見る
$\sqrt{60(n+1)(n^2-1)}$が整数となるような2ケタの整数nをすべて求めよ。
2021中央大学附属高等学校
2021 八王子東高校最初の一問 A
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{\sqrt 6 + 2}{\sqrt 2})(\frac{\sqrt 2 - \sqrt 3 }{3})$
2021八王子東高等学校
この動画を見る
$(\frac{\sqrt 6 + 2}{\sqrt 2})(\frac{\sqrt 2 - \sqrt 3 }{3})$
2021八王子東高等学校
○か✖️か 2021 中大横浜 B
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正しいものをすべて選べ
(ア)$\frac{-4+2\sqrt 3}{2} = -2+2\sqrt 3$
(イ)1は素数である
(ウ)$\sqrt{1.69}$は有理数
(エ)$\frac{3}{0}=0$である
(オ)$\sqrt 9 + \sqrt{16} = \sqrt{25}$
2021中央大学附属横浜高等学校
この動画を見る
正しいものをすべて選べ
(ア)$\frac{-4+2\sqrt 3}{2} = -2+2\sqrt 3$
(イ)1は素数である
(ウ)$\sqrt{1.69}$は有理数
(エ)$\frac{3}{0}=0$である
(オ)$\sqrt 9 + \sqrt{16} = \sqrt{25}$
2021中央大学附属横浜高等学校
三乗根を外せ (類題)学習院大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
三乗根を外せ.
$\sqrt[3]{9-4\sqrt5}$
この動画を見る
三乗根を外せ.
$\sqrt[3]{9-4\sqrt5}$
2021 灘高校 最初の一問
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(2\sqrt 2 -3)^2=$
$\sqrt{\sqrt{(10-7\sqrt 2)^2} - \sqrt{(7-5\sqrt 2)^2} }$
2021灘高等学校
この動画を見る
$(2\sqrt 2 -3)^2=$
$\sqrt{\sqrt{(10-7\sqrt 2)^2} - \sqrt{(7-5\sqrt 2)^2} }$
2021灘高等学校
2021昭和(医)いわくつき学習院の過去問と同じ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.
2021昭和(医)
この動画を見る
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.
2021昭和(医)
2021関西医科大 絶対値記号・整数問題
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
この動画を見る
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
2021年藤田医科大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
この動画を見る
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
秘技!瞬間平方完成
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
この動画を見る
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
これは無理数か?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?
この動画を見る
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?
平方根の計算 A コメント欄に良い解説あり!
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(\frac{1}{\sqrt 2} - \frac{1}{\sqrt 3})(\frac{1}{\sqrt 6} + \frac{1}{3})=$
日比谷高等学校
この動画を見る
$(\frac{1}{\sqrt 2} - \frac{1}{\sqrt 3})(\frac{1}{\sqrt 6} + \frac{1}{3})=$
日比谷高等学校
数理クイズ
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
数理クイズ.これを解け.
$5\times 5=23$
$6\times 6=33$
$7\times 7=45$
$8\times 8=59$
$ 9\times 9=?$
$ 10\times 10=100$
この動画を見る
数理クイズ.これを解け.
$5\times 5=23$
$6\times 6=33$
$7\times 7=45$
$8\times 8=59$
$ 9\times 9=?$
$ 10\times 10=100$
4つの相加相乗平均
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を正とする.
$\dfrac{a+b+c+d}{4}\geqq \sqrt[4]{abcd}$を示し,それを用いて$\dfrac{a+b+c}{3}\geqq \sqrt[3]{abc}$を示せ.
この動画を見る
$a,b,c,d$を正とする.
$\dfrac{a+b+c+d}{4}\geqq \sqrt[4]{abcd}$を示し,それを用いて$\dfrac{a+b+c}{3}\geqq \sqrt[3]{abc}$を示せ.
2021の2021乗根と2020の2020乗根どっちがでかい
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[2021]{2021}$と$\sqrt[2020]{2020}$では,どちらが大きいか?
この動画を見る
$\sqrt[2021]{2021}$と$\sqrt[2020]{2020}$では,どちらが大きいか?
平方根の方程式
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
方程式を解け.$x$は正の実数である.
$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
この動画を見る
方程式を解け.$x$は正の実数である.
$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
2021 ガウス記号
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$[(45+\sqrt{2021})^{2021}]$の$1$の位の数を求めよ.
この動画を見る
$[(45+\sqrt{2021})^{2021}]$の$1$の位の数を求めよ.
3乗根の大小
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{26}$と$\sqrt[3]{28}$では,どちらが$3$に近いか.
この動画を見る
$\sqrt[3]{26}$と$\sqrt[3]{28}$では,どちらが$3$に近いか.
横浜市立大(医)3次方程式の虚数解の絶対値
単元:
#数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.
(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.
横浜市立(医)過去問
この動画を見る
$x^3-x^2-x+k=0(k\gt 1)$である.
(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.
横浜市立(医)過去問
富山大(医) 無理数の証明
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
この動画を見る
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.
(1)$\sqrt p$が無理数であることを示せ.
2016富山大(医)
北海道医療大(薬・歯)式の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.
北海道医療大(薬・歯)過去問
この動画を見る
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.
北海道医療大(薬・歯)過去問
大阪市立大 無理数の証明
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.
1993大阪市立大過去問
この動画を見る
(1)$m,n$を自然数とし,$m\gt n$とする.$2^{\frac{n}{m}}$は無理数であることを示せ.
(2)$2^{\frac{1}{3}}$は有理数係数の2次方程式の解にならないことを示せ.
1993大阪市立大過去問
金沢大 N進法の循環小数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1桁の自然数とする.
$N=\boxed{x}\boxed{y}.\boxed{z}_{(5)}$,$N-1=\boxed{z}\boxed{y}.\boxed{x}_{(7)}$
$(x,y,z)$の値を求めよ.
1969金沢大過去問
この動画を見る
$x,y,z$は1桁の自然数とする.
$N=\boxed{x}\boxed{y}.\boxed{z}_{(5)}$,$N-1=\boxed{z}\boxed{y}.\boxed{x}_{(7)}$
$(x,y,z)$の値を求めよ.
1969金沢大過去問
一橋大(2)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 0$は実数である.
$x-\dfrac{1}{x}$が$0$でない整数であるとき,$x^2-\dfrac{1}{x^2}$は整数出ないことを示せ.
1991一橋大過去問
この動画を見る
$x\neq 0$は実数である.
$x-\dfrac{1}{x}$が$0$でない整数であるとき,$x^2-\dfrac{1}{x^2}$は整数出ないことを示せ.
1991一橋大過去問
3通り以上の平方の和で表せる数
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1^2+8^2=4^2+7^2=65$
$65$は2通りの平方の和で表せる.3通り以上の平方の和で表せる数の列をあげよ.
この動画を見る
$1^2+8^2=4^2+7^2=65$
$65$は2通りの平方の和で表せる.3通り以上の平方の和で表せる数の列をあげよ.
平方数の和
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^2+b^2=13^5$を満たす自然数$(a,b)$の組を1つ例示せよ.
※平方数の和の積は平方数の和で表せる.
この動画を見る
$a^2+b^2=13^5$を満たす自然数$(a,b)$の組を1つ例示せよ.
※平方数の和の積は平方数の和で表せる.
名古屋大 分野不明
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$
(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.
2019名古屋大過去問
この動画を見る
$\sqrt{n}$は整数でなく,小数第一位が$0$で$2$倍は$0$でない.
$\sqrt{n}=\boxed{A}.0\boxed{b}・・・$
(1)最小の$n$を求めよ.
(2)小さい順で$10$番目の$n$を求めよ.
2019名古屋大過去問
【数Ⅰ】数と式:√(4+√7)の2重根号を外す!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{(4+\sqrt7)}$の2重根号を外しなさい
この動画を見る
$\sqrt{(4+\sqrt7)}$の2重根号を外しなさい