2次関数とグラフ - 質問解決D.B.(データベース) - Page 3

2次関数とグラフ

x,yの2次式の値の範囲

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数とする.
$x^2+2y^2-4y=2$を満たすとき,
$x+4y^2-8y$の値の範囲を求めよ.
この動画を見る 

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
この動画を見る 

【数Ⅰ】絶対値付きの不等式【場合分けしなくても解ける!? 裏技的解法も】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\vert x \vert \lt 3を解け.$
$(2)\vert 2x-1 \vert \lt x+4を解け.$
この動画を見る 

【数Ⅰ】絶対値が2つある方程式【見た目より難しい!?丁寧に場合分けをしよう】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ \vert x+2 \vert + \vert 2x-3 \vert =6を解け.$
この動画を見る 

【数Ⅰ】絶対値付きの方程式【絶対値ってなに? 場合分けってなんでするの?】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\vert 2x-1 \vert =3を解け.$
$ (2)\vert x-1 \vert =2x+4を解け.$
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第1問〜放物線と接線

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{1}}}\ a,bを実数とする。座標平面上の放物線y=x^2+ax+bをCとおく。\\
Cは、原点で垂直に交わる2本の接線l_1,l_2を持つとする。\\
ただし、Cとl_1の接点P_1のx座標は、Cとl_2の接点P_2のx座標より小さいとする。\\
(1)bをaで表せ。またaの値は全ての実数をとりうることを示せ。\\
(2)i=1,2に対し、円D_iを、放物線Cの軸上に中心を持ち、点P_iでl_i\\
と接するものと定める。D_2の半径がD_1の半径の2倍となるとき、aの値を求めよ。
\end{eqnarray}

2022東京大学文系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 0 \leqq a \leqq b \leqq 1を満たすa,bに対し、関数\\
f(x)=|x(x-1)|+|(x-a)(x-b)|\\
を考える。xが実数の範囲を動くとき、f(x)は最小値mをもつとする。\\
(1)x \lt 0およびx \gt 1ではf(x) \gt mとなることを示せ。\\
(2)m=f(0)またはm=f(1)であることを示せ。\\
(3)a,bが0 \leqq a \leqq b \leqq 1を満たして動くとき、mの最大値を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

埼玉県 令和4年度 数学 関数 2022 入試問題100題解説74問目!

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
①:$y=ax^2$
②:$y=\frac{b}{x}$
l :$y=cx+d$

a,b,c,dの大小関係を小さい順に不等号で表せ
*図は動画内参照

2022埼玉県
この動画を見る 

軸が動く2次関数の場合分け 最大値 #Shorts

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
軸が動く2次関数の場合分け 最大値に関して解説していきます.
この動画を見る 

都立共通問題 2022 入試問題100題解説69問目!!

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Pのx座標は?
*図は動画内参照

2022都立共通問題
この動画を見る 

軸が動く2次関数の場合分け 最小値 #Shorts

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
軸が動く2次関数の場合分けに関して解説していきます.
この動画を見る 

平方根&分数式の方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \left(x-\dfrac{1}{x}\right)^{\frac{1}{2}}+\left(1-\dfrac{1}{x}\right)^{\frac{1}{2}}=x$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [1] 陸上競技の短距離100m走では、100mを走るのに\hspace{160pt}\\
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの\\
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。\\
ストライドとピッチはそれぞれ以下の式で与えられる。\\
ストライド (m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)},\\
\\
 ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}\\
\\
ただし、100mを走るのにかかった歩数は、最後の1歩が\\
ゴールラインをまたぐこともあるので、\\
少数で 表される。以下、単位は必要のない限り省略する。\\
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、\\
ストライドは\frac{100}{48.5}より約2.06、ピッチ は \\
\frac{ 48.5 }{10.81} より約4.49である。\\
\\
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、\\
ストライドは1歩あたりの進む距離\\
なので、1秒あたりの進む距離すなわち平均速度は、\\
xとzを用いて\boxed{\ \ ア\ \ }(m/秒) と表される。\\
これよりタイムと、ストライド、ピッチとの関係はタイム=\frac{100}{\boxed{\ \ ア\ \ }} と\\
表されるので\boxed{\ \ ア\ \ } が最大となるとき\\
にタイムが最もよくなる。ただし、タイムがよくなるとは、\\
タイムの値が小さくなることである。\\
\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪ x+z ①z-x ②xz ③\frac{x+z}{2} ④\frac{z-x}{2} ⑤\frac{xz}{2}\\
\\
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと\\
ピッチを考えることにした。右に表は、太郎さんが練習で\\
100mを3回走った時のストライドとピッチのデータである。\\
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、\\
ストライドの最大値は2.40、ピッチの最大値は4.80である。\\
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという\\
関係があると考えてピッチがストライドの1次関数として\\
表されると仮定した。このとき、ピッチzはストライドxを用いて\\
z=\boxed{\ \ イウ\ \ }\ x+\frac{\boxed{\ \ エオ\ \ }}{5} \ldots② と表される。\\
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80\\
まで成り立つと仮定すると、xの値の範囲は\\
\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40\\
\\
(3)y=\boxed{\ \ ア\ \ }とおく。②をy=\boxed{\ \ ア\ \ }に代入することにより、\\
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド\\
とピッチを求めるためには、\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40の範囲で\\
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは\\
x=\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときである。よって、太郎さんのタイムが最もよくなるのは、\\
ストライドが\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときであり、このとき、ピッチは\boxed{\ \ シ\ \ }.\boxed{\ \ スセ\ \ }\\
である。また、このときの太郎さんのタイムは①により\boxed{\ \ ソ\ \ }である。\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
この動画を見る 

久しぶりの二次関数 基本です。広島県

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$
$a=?$(a>0)
*図は動画内参照

広島県
この動画を見る 

【数Ⅰ】2次関数:平行移動

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数 $y = ax^2 + bx + c$ のグラフを、x軸 方向に3、y軸方向に-2だけ平行移動した 放物線は、点(5,13)を通り、頂点の座標が (2,-5)である。 このとき、定数a、b、cの値を求めよ。
この動画を見る 

【数Ⅰ】軸が動く2次関数の最大最小【図を動かしながら場合分け】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ y=x^2-4ax+a(0 \leqq x \leqq 2)
の最小値および最大値を求めよ.$
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a\\
⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a  \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0\\
⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2  \\
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

【数Ⅰ】2次関数:2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x\geqq 0,y\geqq 0,x+y=4$のとき、次の問いに答えよう。
(1)xのとりうる値の範囲を求めよう。
(2)$x^2+y^2$の最小値と、最小値をとるx,yの値を求めよう。
(3)$x^2+y^2$の最大値と、最大値をとるx,yの値を求めよう。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}\ のとき、次の関数が最大値をとるときのxの値を求めよ。\\
y=\sin x+\cos^2x
\end{eqnarray}

2021中央大経済学部過去問
この動画を見る 

【よく出る】数学Ⅰ 2次関数の係数の符号決定

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2次関数$y=ax^2+bx+c$のグラフが、図のようになっているとき、次の値は、正、負、$0$のどれであるか。
(1)$a$
(2)$b$
(3)$c$
(4)$b^2-4ac$
(5)$a-b+c$
この動画を見る 

【中学数学】2次方程式の解の公式の証明~中3以上はできないとヤバい~ 3-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の解の公式の証明
この動画を見る 

数I 2次関数の最大に関する問題  (他の問題の解説もあり)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=-x^2+4x (a \leqq x \leqq a+2)$
(1)最大値=3となるaの値=?
(2)最大値=4となるaの範囲は?
この動画を見る 

福田のわかった数学〜高校1年生029〜いろいろなグラフ(3)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(3)\\
0 \leqq x \leqq 16の範囲で、\\
y=x[\sqrt x] のグラフを描け。
\end{eqnarray}
この動画を見る 

【2次関数の応用問題はこう解く!】最大値と最小値の応用問題を図でイメージする方法を解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ


$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
この動画を見る 

福田のわかった数学〜高校1年生028〜いろいろなグラフ(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(2)\\
-2 \leqq x \leqq 4の範囲で\\
\\
y=[x]-x\\
\\
のグラフを描け。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校1年生026〜グラフの対称性と平行移動の概念(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 対称性、平行移動の概念
次の式の表すグラフを描け。
$y=||x^2-4|-3|$
この動画を見る 

知っていれば一瞬!! これぞ受験テクニック

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△OAB=△OAC
点Cのx座標=?
*図は動画内参照
この動画を見る 

福田のわかった数学〜高校1年生022〜2次方程式の解の分離

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次方程式の解の分離
$a \geqq 0$のとき、
$x^2-(a+1)x-a=0$
の実数解の取り得る値の範囲を求めよ。
この動画を見る 

【図でイメージする!】2次関数の最大値と最小値の問題はこう解く!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
2次関数の値の範囲と最大値・最小値
①$y=x^2-2x+1$を定義域(0 \leqq x \leqq 3)でグラフをかけ

②$y=2x^2-4x+1$について$-1 \leq z \leq 2$の範囲での最大値と最小値を求めよ

③$y=-3x^2-4x-1$について$1 \leq z \leq 3$の範囲での最大値と最小値を求めよ
この動画を見る 
PAGE TOP