2次関数 - 質問解決D.B.(データベース) - Page 3

2次関数

【短時間でマスター!!】二次不等式を全パターン解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
①$x^2-x-2>0$
②$x^2-x-2≦0$
③$x^2-8x+16>0$
④$x^2-8x+16<0$
⑤$x^2-8x+16≧0$
⑥$x^2-8x+16≦0$
この動画を見る 

学習院大 2次不等式の基本問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021学習院大学過去問題
$a,b$実数
$ax^2-3x+gt 0$
をみたすxの範囲が$a\lt x\lt a+1$
a,bの値
この動画を見る 

2次方程式と2次不等式のよくある間違い

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2=9$を解け。x=3
$x^2<9$を解け。
*図は動画内参照
この動画を見る 

2次不等式を2次方程式のように解いてはならない 高校数学

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
不等式を解け
$x\times x < 3\times 3$
この動画を見る 

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 

二次関数の最大値と最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=x^2$で$2 \leqq x < 5$のときのyの最大値と最小値を求めよ
この動画を見る 

文字を含む二次方程式 関西学院高

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xに関する2次方程式を解け
$(2x-a)^2=6x-3a+4$
(aは定数)

関西学院高等部
この動画を見る 

ただの連立方程式だよね

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$abc=1$
$a+\frac{1}{b}=55$
$b+\frac{1}{c}=7$
$C+\frac{1}{a}=?$
この動画を見る 

福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。

2023名古屋大学文系過去問
この動画を見る 

最初は誰もがつまづく。二次不等式 数I

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(1)$x^2 \geqq 0$
(2)$x^2 \leqq 0$
(3)$x^2 > 0$
(4)$x^2 < 0$
この動画を見る 

初めまして 二次不等式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
不等式を解け
(1) $x-2< 0$
(2) $x(x-2) < 0$
この動画を見る 

福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。

2023東北大学文系過去問
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問4

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問4. a,bを定数とします。放物線$y=-x^2+4ax+b$ について、次の問いに答えなさい。
(5) 頂点の座標をa,bを用いて表しなさい。この問題は答えだけを書いてください。
(6) 放物線 $y=-x^2$ をx軸方向に1、y軸方向に5だけ平行移動したところ、上の放物線になりました。このとき、a,bの値をそれぞれ求めなさい。
この動画を見る 

2次関数の決定【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
172 次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
  (2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
この動画を見る 

2次関数の最大と最小条件式つき【野本さんちのツトムくんがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $2x+y=1$のとき,$x^2+y^2$の最小値を求めよ。
(2) $x+2y+3=0$のとき,$xy$の最大値を求めよ。

$x\geqq O, y\geqq O, x+y=4$のとき,xのとりうる値の範囲を求めよ。また、$x^2+2y^2$の最大値と最小値を求めよ。
この動画を見る 

スイカに塩  小数と2次方程式  関西大学第一(改)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2 - 0.001 = 0$
関西大学第一高等学校
この動画を見る 

【迷わず進め!】二次方程式:東京都立八王子東高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ (x+1)^2+(x+1)(x+2)+4x+5=0 $を解け.

都立八王子東高校過去問
この動画を見る 

等式の変形だけど実は2次〇〇○

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=?$ $(a+b \neq 0)$
$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(2)〜虚数が係数の2次方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)式4$z^2$+4$z$-$\sqrt 3 i$=0を満たす複素数zは2つある。それらを$\alpha$,$\beta$とする。ただし、$i$は虚数単位である。$\alpha$,$\beta$に対応する複素数平面上の点をそれぞれP,Qとすると、線分PQの長さは$\boxed{\ \ え\ \ }$であり、PQの中点の座標は($\boxed{\ \ お\ \ }$, $\boxed{\ \ か\ \ }$)である。
また線分PQの垂直二等分線の傾きは$\boxed{\ \ き\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

高校入試の頻出問題を手早く解答する動画~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#2次関数#2次方程式と2次不等式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2-8x+2a+1=0 $の解の1つが$ x=3 $であるとき,
aの値を求めよ.また,もう一つの解を求めなさい.

栃木県高校過去問
この動画を見る 

慶應義塾高校 2次方程式解け

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(2021-x)(2022-x) =2023 - x$

慶應義塾高等学校
この動画を見る 

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

【数検準2級】高校数学:数学検定準2級2次:問1

アイキャッチ画像
単元: #数Ⅰ#数学検定・数学甲子園・数学オリンピック等#2次関数#2次方程式と2次不等式#数学検定#数学検定準2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問1.
1辺の長さが6mの正方形の形をした花壇Aがあります。花壇Aより縦が 2a m長く、横が a m長い長方形の形をした
花壇Bをつくるとき、次の問いに答えなさい。ただし、a>0とします。
(1) 花壇Bの面積は、花壇Aの面積より何m²大きいですか。aを用いて表しなさい。この問題は答えだけを書いてください。
(2) 花壇Bの面積が花壇Aの面積より72m²大きいとき、aを求めるための方程式をつくり、それを解いてaの値を求めなさい。
この動画を見る 

ルートの入っている二次方程式を解け。2023東海

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式を解け
$2\sqrt 2 x^2 - \sqrt{14}x - \sqrt 2 = 0$

2023東海高等学校
この動画を見る 

入試問題送って下さった本当にありがとうございました。2023高校入試数学解説100問目 二次方程式 帝京大学高校(改)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(2x-4)^2 = 8-4(x-2)$

帝京大学高等学校
この動画を見る 

【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:本論

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
この動画を見る 

【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
この動画を見る 

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
この動画を見る 

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:序章

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(1) xのとりうる値の最大値・最小値を求めよ。
この動画を見る 
PAGE TOP