三角比への応用(正弦・余弦・面積)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第2問〜三角比、データの分析

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#三角比への応用(正弦・余弦・面積)#データの分析#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、
$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$
である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから
$AD=\boxed{\ \ カ\ \ }$
である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。
[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。
99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。
⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。
(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。
$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。
次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)
(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。
次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)
(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。
都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)
2020センター試験過去問
この動画を見る
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、
$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$
である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから
$AD=\boxed{\ \ カ\ \ }$
である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。
[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。
99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。
⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。
(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。
$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。
次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)
(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。
次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)
(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。
都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)
2020センター試験過去問
光文社新書「中学の知識でオイラー公式がわかる」Vol 18 いざ本丸へ

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^{i\theta}=\cos\theta+i \sin\theta$
$e^{i\pi}=-1$
この動画を見る
$e^{i\theta}=\cos\theta+i \sin\theta$
$e^{i\pi}=-1$
光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
光文社新書「中学の知識でオイラーの公式がわかる」Vol.3余弦定理

成城大 ド・モアブル証明 6倍角の公式?

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\cos\theta+i\sin\theta$
(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ
(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ
(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ
出典:2005年成城大学 過去問
この動画を見る
$z=\cos\theta+i\sin\theta$
(1)
$n$整数
$z^n=\cos n \theta + i \sin n \theta$を示せ
(2)
$z+\displaystyle \frac{1}{z}$を$\cos \theta$を用いて表せ
(3)
$\cos^6\theta$を$\cos2\theta,\cos4\theta,\cos6\theta$を用いて表せ
出典:2005年成城大学 過去問
Mr 東北大 1浪1留院試落ち 人生各駅停車 さがらごうち

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
動画内の図を参照して求めよ
(1)
$AP$
(2)
$OD$
(3)
$\cos \angle OAD$
(4)
$AC$
(5)
$\triangle ABC$
この動画を見る
動画内の図を参照して求めよ
(1)
$AP$
(2)
$OD$
(3)
$\cos \angle OAD$
(4)
$AC$
(5)
$\triangle ABC$
Prove π is larger than 3.05 ~Tokyo University Entrance Examination~

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\pi$が3.05より大きいことを証明せよ
出典:東京大学 入試問題
この動画を見る
$\pi$が3.05より大きいことを証明せよ
出典:東京大学 入試問題
東大卒のもっちゃんと数学Vol.7 加法定理を証明しよう(東大過去問)

単元:
#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
加法定理を証明 解説動画です
$\cos (\alpha+\beta)=\cos \alpha \cos\beta -\sin \alpha \sin\beta$
この動画を見る
加法定理を証明 解説動画です
$\cos (\alpha+\beta)=\cos \alpha \cos\beta -\sin \alpha \sin\beta$
数弱私文の早大生バンカラジオにヨビノリたくみが「優しく」三角関数の基本を教えるよ。余弦定理

東大卒もっちゃんと数学 余弦定理 Mathematics Japanese university entrance exam

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
この動画を見る
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
【高校数学】 数Ⅰ-95 多角形の面積

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
この動画を見る
◎次のような図形の面積Sを求めよう。
①$AB=5,BC=8,CD=4,\angle B=\angle C=60°$の四角形ABCD
②1辺の長さが2の正十二角形
【高校数学】 数Ⅰ-94 三角形の面積② ・ ヘロンの公式編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)
◎次のような△ABCの面積を求めよう。
③a=8,b=6,C=4
④a=7,b=5,C=9
この動画を見る
3辺の長さがa,b,cである△ABCの面積Sは、
S=①____________(t=②____________)
◎次のような△ABCの面積を求めよう。
③a=8,b=6,C=4
④a=7,b=5,C=9
【高校数学】 数Ⅰ-93 三角形の面積① ・ 基本編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
三角形の面積S=①__________________
△ABCの内接円の半径rとするとS=②____________
※図は動画内参照
◎次の△ABCの面積Sを求めよう。
③$b=3,C=2,A=120°$
④$a=2\sqrt{ 2 },b=3,A110°,B=25°$
⑤$a=6,b=3,c=7$
この動画を見る
三角形の面積S=①__________________
△ABCの内接円の半径rとするとS=②____________
※図は動画内参照
◎次の△ABCの面積Sを求めよう。
③$b=3,C=2,A=120°$
④$a=2\sqrt{ 2 },b=3,A110°,B=25°$
⑤$a=6,b=3,c=7$
【高校数学】 数Ⅰ-91 正弦定理と余弦定理④

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。
①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
この動画を見る
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。
①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
【高校数学】 数Ⅰ-90 正弦定理と余弦定理③

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。
①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$
②$\sin A:\sin B:\sin C=5:4:6$
この動画を見る
◎△ABCにおいて、次が成り立つとき、この三角形の最も大きい角の余弦の値を求めよう。
①$\displaystyle \frac{a}{13}=\displaystyle \frac{b}{8}=\displaystyle \frac{c}{7}$
②$\sin A:\sin B:\sin C=5:4:6$
【高校数学】 数Ⅰ-89 正弦定理と余弦定理②

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
この動画を見る
◎△ABCにおいて、$a=2,b=\sqrt{ 6 },A=45°$のとき、
残りの底辺の長さと角の大きさを求めよう。
【高校数学】 数Ⅰ-88 正弦定理と余弦定理①

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$
②$a=4,b=\sqrt{ 21 },C=5$のとき$B$
③$b=60°,a:b=1:3$のとき$\sin A$
この動画を見る
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$
②$a=4,b=\sqrt{ 21 },C=5$のとき$B$
③$b=60°,a:b=1:3$のとき$\sin A$
【高校数学】 数Ⅰ-87 余弦定理

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照
◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
この動画を見る
△ABCについて
①$a^2=$____
②$b^2=$____
③$c^2=$____
④$\cos A=$____
⑤$\cos B=$____
⑥$\cos C=$____
※図は動画内参照
◎△ABCにおいて、次のものを求めよう。
⑦$a=3,b=\sqrt{ 2 },C=45°$のとき $c$
⑧$b=7,c=5,B=60°$のとき$a$
【高校数学】 数Ⅰ-86 正弦定理

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
△ABCの外接円の半径をRとすると
①____=②____=③____=2R
◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。
④B=120°,R=4のとき b
⑤a=5$\sqrt{ 3 }$,R=5のとき A
⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb
※図は動画内参照
この動画を見る
△ABCの外接円の半径をRとすると
①____=②____=③____=2R
◎△ABCにおいて、外接円の半径をRとするとき、次のものを求めよう。
④B=120°,R=4のとき b
⑤a=5$\sqrt{ 3 }$,R=5のとき A
⑥A=60°,C=75°,a=$2\sqrt{ 6 }$のとき Rとb
※図は動画内参照
【高校数学】 数Ⅰ-84 三角比⑨

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。
①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos \theta \lt \displaystyle \frac{1}{2}$
③$\tan \theta \geqq \sqrt{ 3 }$
④$2\sin \theta-1\leqq0$
⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$
⑥$\tan \theta +1 \geqq 0$
この動画を見る
$0° \leqq \theta \leqq 180°$とする。次の不等式を満たす
$\theta $の範囲を求めよう。
①$\sin \theta \gt \displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos \theta \lt \displaystyle \frac{1}{2}$
③$\tan \theta \geqq \sqrt{ 3 }$
④$2\sin \theta-1\leqq0$
⑤$2\cos \theta+ \sqrt{ 3 } \gt 0$
⑥$\tan \theta +1 \geqq 0$
【高校数学】 数Ⅰ-80 三角比⑤

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____
$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
この動画を見る
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____
$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
【高校数学】 数Ⅰ-79 三角比④ ・ 暗記編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
$\begin{array}{|c|c|c|}
\hline
\theta & 0° & 30° & 45° & 60° & 90° & 120° & 135° & 150° & 180° \\
\hline
\sin\theta & & \\
\hline
\cos\theta & & \\
\hline
\tan\theta & & \\
\hline
\end{array}$
この動画を見る
空欄を埋めよ。
$\begin{array}{|c|c|c|}
\hline
\theta & 0° & 30° & 45° & 60° & 90° & 120° & 135° & 150° & 180° \\
\hline
\sin\theta & & \\
\hline
\cos\theta & & \\
\hline
\tan\theta & & \\
\hline
\end{array}$
【高校数学】 数Ⅰ-76 三角比① ・ 基本編

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0° \lt \theta \lt 90°$のとき、右の図について
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
◎図のような直角三角形において$\sin \theta,\cos \theta,tan \theta$の値をそれぞれ求めよう。
④
⑤
※図は動画内参照
この動画を見る
$0° \lt \theta \lt 90°$のとき、右の図について
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
◎図のような直角三角形において$\sin \theta,\cos \theta,tan \theta$の値をそれぞれ求めよう。
④
⑤
※図は動画内参照