数Ⅰ

共テ数学90%取る勉強法

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
777777を素因数分解

鳥取大 ただの因数分解

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3-5x^2-5x+4$を因数分解しなさい
鳥取大過去問
この動画を見る
$2x^3-5x^2-5x+4$を因数分解しなさい
鳥取大過去問
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
式の値 2通りで解説!!

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
この動画を見る
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
tan7. 5°の華麗な求め方

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
\frac{1}{\tan\frac{\pi}{24}}の値
\end{eqnarray}
$
消えるのが気持ち良い

福田の数学〜中学生でも解ける大学入試問題〜明治大学2023年全学部統一ⅠⅡAB第1問(5)〜共通弦の長さ

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(5)原点をOとする座標平面上に点Aと点Bがある。点Aの座標は(40,0)であり、
点BはOB=37, AB=13 を満たす。この座標平面上でOBを直径とする円を$C_1$とし、ABを直径とする円を$C_2$とする。このとき、$C_1$と$C_2$の交点を結ぶ線分の長さは$\boxed{\ \ タチ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$
(5)原点をOとする座標平面上に点Aと点Bがある。点Aの座標は(40,0)であり、
点BはOB=37, AB=13 を満たす。この座標平面上でOBを直径とする円を$C_1$とし、ABを直径とする円を$C_2$とする。このとき、$C_1$と$C_2$の交点を結ぶ線分の長さは$\boxed{\ \ タチ\ \ }$である。
同じ数を3回足しても3回かけても等しくなる数とは?

ここに補助線!! 関数だけど図形で解く!!東京学芸大学附属

福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均

単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
この動画を見る
$\Large{\boxed{1}}$
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は$\boxed{\ \ サ\ \ }$である。
【数Ⅰ】図形と計量:三角比への応用:3つのsinの比から角度を求める!

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
この動画を見る
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
【数Ⅰ】図形と計量:三角比への応用:「角の二等分線」の長さの求め方!

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$AB=2,AC=3,A=60°$とし,$∠A$の二等分線と辺$BC$の交点を$D$とする。線分$AD$の長さを求めよ。
この動画を見る
$△ABC$において,$AB=2,AC=3,A=60°$とし,$∠A$の二等分線と辺$BC$の交点を$D$とする。線分$AD$の長さを求めよ。
福田の数学〜虚数係数の2次方程式の解き方〜明治大学2023年全学部統一ⅠⅡAB第1問(2)〜

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(2)$k$を実数とする。$x$についての方程式
$x^2$-(4-3$i$)$x$+(4-$ki$)=0
を満たす実数$x$があるとき、$k$=$\boxed{\ \ キ\ \ }$である。このとき、上の等式を満たす$x$の値は2つあり、$\boxed{\ \ ク\ \ }$と$\boxed{\ \ ケ\ \ }$-$\boxed{\ \ コ\ \ }$$i$ である。ただし、$i$を虚数単位とする。
この動画を見る
$\Large{\boxed{1}}$
(2)$k$を実数とする。$x$についての方程式
$x^2$-(4-3$i$)$x$+(4-$ki$)=0
を満たす実数$x$があるとき、$k$=$\boxed{\ \ キ\ \ }$である。このとき、上の等式を満たす$x$の値は2つあり、$\boxed{\ \ ク\ \ }$と$\boxed{\ \ ケ\ \ }$-$\boxed{\ \ コ\ \ }$$i$ である。ただし、$i$を虚数単位とする。
福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
この動画を見る
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。
2023早稲田大学社会科学部過去問
因数分解

素因数分解せよ

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
12317
素因数分解せよ
この動画を見る
12317
素因数分解せよ
引くばか 二次方程式の応用 昭和学院秀英

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-5x+c=0$の2つの解の比が2:3である。
定数cの値を求めよ。
昭和学院秀英高等学校
この動画を見る
2次方程式$2x^2-5x+c=0$の2つの解の比が2:3である。
定数cの値を求めよ。
昭和学院秀英高等学校
こういう問題で差がつくのだ。円 高知県

円周角の定理のなぜ?

答えが変わる!! 慶應湘南藤沢中

秋だけど因数分解

福田の数学〜早稲田大学2023年商学部第1問(2)〜三角形の内接円の半径と不定方程式

単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?
2023早稲田大学商学部過去問
この動画を見る
$m,n$は自然数。半径1の円に内接する$\triangle {ABC}$が
$\sin {\angle A}=\require{physics}\flatfrac{m}{17}$、$\sin {\angle B}=\require{physics}\flatfrac{n}{17}$、
$\sin^2\angle C=\sin^2\angle A+\sin^2\angle B$
を満たすとき、$\triangle {ABC}$の内接円の半径は?
2023早稲田大学商学部過去問
有名問題

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=AC=4のとき
AD×AE=?
*図は動画内参照
この動画を見る
AB=AC=4のとき
AD×AE=?
*図は動画内参照
福田のおもしろ数学~第1回〜どっちがお得〜1年ごとに10万円昇給と半年ごとに3万円昇給

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある社員に2つの昇給プランが提示された。
プランA:年俸は1年に1回支払われ、毎回10万円昇給する。
プランB:年棒は半年に1回支払われ、毎回3万円昇給する。
どちらのプランを選ぶべきか?
この動画を見る
ある社員に2つの昇給プランが提示された。
プランA:年俸は1年に1回支払われ、毎回10万円昇給する。
プランB:年棒は半年に1回支払われ、毎回3万円昇給する。
どちらのプランを選ぶべきか?
因数分解

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
因数分解(整数係数)\\
x^4-2x^2-20x-24
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
因数分解(整数係数)\\
x^4-2x^2-20x-24
\end{eqnarray}
$
いきなり展開したら負け!東邦大附属東邦

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$(100 - x)(101 -x) = 104-x$
東邦大学付属東邦高等学校
この動画を見る
2次方程式を解け
$(100 - x)(101 -x) = 104-x$
東邦大学付属東邦高等学校
気付けば気持ちいいぞ!2次方程式 東邦大附属東邦

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式を解け
$(x+100)^2=2x+199$
東邦大学付属東邦高等学校
この動画を見る
2次方程式を解け
$(x+100)^2=2x+199$
東邦大学付属東邦高等学校
約数の和に関する問題だ 専修大松戸

単元:
#数Ⅰ#数と式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正の整数nのすべての正の約数の和を$\langle \langle n \rangle \rangle$で表すことにする。
$\langle \langle n \rangle \rangle =n+8$をみたすnの値をすべて求めよ。
専修大学松戸高等学校
この動画を見る
正の整数nのすべての正の約数の和を$\langle \langle n \rangle \rangle$で表すことにする。
$\langle \langle n \rangle \rangle =n+8$をみたすnの値をすべて求めよ。
専修大学松戸高等学校
【短時間でポイントチェック!!】内接円や外接円の三角形の面積〔現役講師解説、数学〕

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
※図は動画内参照
①Aは?
②CDは?
③四角形ABCDの面積は?
※図は動画内参照
①$\cos A$
②△ABCの面積$S$
③△ABCの内接円の半径$r$
この動画を見る
※図は動画内参照
①Aは?
②CDは?
③四角形ABCDの面積は?
※図は動画内参照
①$\cos A$
②△ABCの面積$S$
③△ABCの内接円の半径$r$