数Ⅰ
【高校数学】いろんな方法で因数分解してみた #Shorts
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
この動画を見る
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
福田の1.5倍速演習〜合格する重要問題024〜名古屋大学2016年度理系数学第1問〜垂直条件と解の存在範囲
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
曲線$y=x^2$上に2点$A(-2,4),B(b,b^2)$をとる。ただし、$b \gt -2$とする。
このとき、次の条件を満たすbの範囲を求めよ。
条件:$y=x^2$上の点$T(t,t^2)(-2 \lt t \lt b)$で、$\angle ATB$が直角になるものが
存在する。
2016名古屋大学理系過去問
この動画を見る
曲線$y=x^2$上に2点$A(-2,4),B(b,b^2)$をとる。ただし、$b \gt -2$とする。
このとき、次の条件を満たすbの範囲を求めよ。
条件:$y=x^2$上の点$T(t,t^2)(-2 \lt t \lt b)$で、$\angle ATB$が直角になるものが
存在する。
2016名古屋大学理系過去問
直角三角形と2つの円 茨城県
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円Oの半径=?
(円Oの半径=円O'の半径)
*図は動画内参照
茨城県
この動画を見る
円Oの半径=?
(円Oの半径=円O'の半径)
*図は動画内参照
茨城県
【わかりやすく解説】三角方程式(高校数学Ⅰ/三角比)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$の時、次の等式を満たす$\theta$の値を求めよ
(1)$2\sin\theta=1$
(2)$2\cos\theta=-1$
(3)$\sqrt{ 3 }\tan\theta-1=0$
(4)$\cos\theta=0$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$の時、次の等式を満たす$\theta$の値を求めよ
(1)$2\sin\theta=1$
(2)$2\cos\theta=-1$
(3)$\sqrt{ 3 }\tan\theta-1=0$
(4)$\cos\theta=0$
【数学】有理化がなぜ必要なのか?解説してみた!
単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
有理化って何のためにしてるか知っていますか??
この動画を見る
有理化って何のためにしてるか知っていますか??
正方形の中にある直角三角形の面積
福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ
単元:
#数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。
2021北里大学医学部過去問
この動画を見る
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。
2021北里大学医学部過去問
出題者の意図を汲みとるだけの問題。灘高の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2})^2-\sqrt{(7-5\sqrt2})^2}=?$
?を求めよ.
灘高校過去問
この動画を見る
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2})^2-\sqrt{(7-5\sqrt2})^2}=?$
?を求めよ.
灘高校過去問
【裏側】ビビるくらい一瞬で解く
ナイスな連立方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.x,yを正の実数とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=32 \\
x\sqrt y+y\sqrt x=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る
これを解け.x,yを正の実数とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=32 \\
x\sqrt y+y\sqrt x=31
\end{array}
\right.
\end{eqnarray}$
二次方程式の応用 慶應志木
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$2x^2+24x+a= 0$の解が偶数となるような正の整数aを全て求めよ。
慶應義塾志木高等学校
この動画を見る
2次方程式$2x^2+24x+a= 0$の解が偶数となるような正の整数aを全て求めよ。
慶應義塾志木高等学校
【高校数学】余弦定理の応用~問題演習~ 3-7.5【数学Ⅰ】
内接円の半径を求める公式で解けるのか? 慶應志木
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=?
*図は動画内参照
慶應義塾志木高等学校
この動画を見る
円の半径=?
*図は動画内参照
慶應義塾志木高等学校
式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+\dfrac{1}{a}=-1$のとき,$(a-1)^{12}$の値を求めよ.
この動画を見る
$a+\dfrac{1}{a}=-1$のとき,$(a-1)^{12}$の値を求めよ.
福田の1.5倍速演習〜合格する重要問題012〜京都大学2015年度文系数学第1問〜折れ線と交わらない条件
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次関数とグラフ#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
直線$y=px+q$が、$y=x^2-x$のグラフとは交わるが、$y=|x|+|x-1|+1$
のグラフとは交わらないような(p,q)の範囲を図示し、その面積を求めよ。
2015京都大学文系過去問
この動画を見る
直線$y=px+q$が、$y=x^2-x$のグラフとは交わるが、$y=|x|+|x-1|+1$
のグラフとは交わらないような(p,q)の範囲を図示し、その面積を求めよ。
2015京都大学文系過去問
二重根号の整数問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt{n+\sqrt{n+7}}$が整数となる自然数nをすべて求めよ.
この動画を見る
$ \sqrt{n+\sqrt{n+7}}$が整数となる自然数nをすべて求めよ.
【数検2級】数学検定2級2次:問題6
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学検定#数学検定2級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題6.(必須)
△ABCにおいて、$BC=a、CA=b、AB=c$とするとき、次の問いに答えなさい。
(1)$a\cos B+b\cos A-c$ の値を求めなさい。この問題は解法の過程を記述せずに、答えだけを書いてください。
(2) 次の等式が成り立つとき、△ABCはどのような三角形ですか。理由をつけて答えなさい。
$a^2\sin^2B+b^2\sin^2 A=2ab\cos A\cos B$
この動画を見る
問題6.(必須)
△ABCにおいて、$BC=a、CA=b、AB=c$とするとき、次の問いに答えなさい。
(1)$a\cos B+b\cos A-c$ の値を求めなさい。この問題は解法の過程を記述せずに、答えだけを書いてください。
(2) 次の等式が成り立つとき、△ABCはどのような三角形ですか。理由をつけて答えなさい。
$a^2\sin^2B+b^2\sin^2 A=2ab\cos A\cos B$
秒でできちゃった
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{1-a}+\dfrac{b}{1-b}+\dfrac{c}{1-c}=1$のとき,
$\dfrac{1}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}$の値を求めよ.
この動画を見る
$ \dfrac{1}{1-a}+\dfrac{b}{1-b}+\dfrac{c}{1-c}=1$のとき,
$\dfrac{1}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}$の値を求めよ.
解けるように作られた根号方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^2+7x-5=5\sqrt{x^3-1}$
これの実数解を求めよ.
この動画を見る
$ x^2+7x-5=5\sqrt{x^3-1}$
これの実数解を求めよ.
平方根の方程式 あれに気をつけて
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt{6x+7}-\sqrt{9x+1}=1$
これを解け.
この動画を見る
$ \sqrt{6x+7}-\sqrt{9x+1}=1$
これを解け.
正六角形
福田の1.5倍速演習〜合格する重要問題007〜大阪大学2015年文系数学第1問〜不等式の証明
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#三角関数#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。
2015大阪大学文系過去問
この動画を見る
実数x,yが$|x| \leqq 1$と$|y| \leqq 1$を満たすとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1$
が成り立つことを示せ。
2015大阪大学文系過去問
あれのオンパレード!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt{\dfrac{99^4+101^4+200^4}{2}}$
これを解け.
この動画を見る
$ \sqrt{\dfrac{99^4+101^4+200^4}{2}}$
これを解け.
福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。
2015一橋大学文系過去問
この動画を見る
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。
2015一橋大学文系過去問
あれを使って解くよ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
この動画を見る
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
2次式 連立方程式 国学院高校
単元:
#数学(中学生)#中2数学#連立方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)
國學院高等学校
この動画を見る
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)
國學院高等学校
Factorizationよどみなく因数分解してくれ!
三乗根の方程式
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{4-x}+\sqrt[3]{x-300}=-2$
これを解け.
この動画を見る
$\sqrt[3]{4-x}+\sqrt[3]{x-300}=-2$
これを解け.
【苦手な人6分時間をください!!】必要十分条件を解説!〔現役塾講師解説、数学〕
二次方程式 国学院高校
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b=-6$ , $ab = 5$のとき方程式$(x+a)(x+b)=0$を解け
國學院高等学校
この動画を見る
$a+b=-6$ , $ab = 5$のとき方程式$(x+a)(x+b)=0$を解け
國學院高等学校