約数・倍数・整数の割り算と余り・合同式
琉球大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
pは素数であり,nを自然数とする.
$f(n)=n^p-n,f(n+1)-f(n)$はpの倍数であることを示せ.
琉球大過去問
この動画を見る
pは素数であり,nを自然数とする.
$f(n)=n^p-n,f(n+1)-f(n)$はpの倍数であることを示せ.
琉球大過去問
範囲を絞れ!整数問題の入試問題【東京女子大学】【数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$a,b,c$が整数で、$1≦a≦b≦c$かつ$abc=a+b+c$のとき、$ab≦3$であることを示せ。
(2)$1≦a≦b≦c$かつ$abc=a+b+c$を満たす整数$a,b,c$をすべて求めよ。
東京女子大過去問
この動画を見る
(1)$a,b,c$が整数で、$1≦a≦b≦c$かつ$abc=a+b+c$のとき、$ab≦3$であることを示せ。
(2)$1≦a≦b≦c$かつ$abc=a+b+c$を満たす整数$a,b,c$をすべて求めよ。
東京女子大過去問
整数問題 中学生には難しい 滝高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{a^2-12}{a}$が自然数となる整数aの値をすべて求めよ。$(a \neq 0)$
滝高等学校
この動画を見る
$\frac{a^2-12}{a}$が自然数となる整数aの値をすべて求めよ。$(a \neq 0)$
滝高等学校
【正答率1%】3つの方法で桁数を求めます【一橋大学 入試問題 数学】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$(2\times3\times5\times7\times11\times13)^{10}$の桁数は?
一橋大過去問
この動画を見る
$(2\times3\times5\times7\times11\times13)^{10}$の桁数は?
一橋大過去問
nを求めよ 整数問題 高校入試 佼成学園
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数$n^3-n$が51の倍数となるような自然数nのうち最小のものを求めよ
佼成学園高等学校
この動画を見る
自然数$n^3-n$が51の倍数となるような自然数nのうち最小のものを求めよ
佼成学園高等学校
福田の数学〜九州大学2022年理系第3問〜約数と倍数と不定方程式の自然数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 自然数m,nが\\
n^4=1+210m^2 \ldots①\\
を満たすとき、以下の問いに答えよ。\\
(1)\frac{n^2+1}{2},\ \frac{n^2-1}{2}は互いに素な整数であることを示せ。\\
(2)n^2-1は168の倍数であることを示せ。\\
(3)①を満たす自然数の組(m,n)を1つ求めよ。
\end{eqnarray}
2022九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 自然数m,nが\\
n^4=1+210m^2 \ldots①\\
を満たすとき、以下の問いに答えよ。\\
(1)\frac{n^2+1}{2},\ \frac{n^2-1}{2}は互いに素な整数であることを示せ。\\
(2)n^2-1は168の倍数であることを示せ。\\
(3)①を満たす自然数の組(m,n)を1つ求めよ。
\end{eqnarray}
2022九州大学理系過去問
福田の数学〜九州大学2022年理系第2問〜商と余りの関係と極限
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ nを3以上の自然数、\alpha,\betaを相異なる実数とするとき、以下の問いに答えよ。\\
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。\\
x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C\\
(2)(1)のA,B,Cをn,\alpha,\betaを用いて表せ。\\
(3)(2)のAについて、nと\alphaを固定して、\betaを\alphaに近づけたときの極限\\
\lim_{\beta \to \alpha}Aを求めよ。
\end{eqnarray}
2022九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ nを3以上の自然数、\alpha,\betaを相異なる実数とするとき、以下の問いに答えよ。\\
(1)次を満たす実数A,B,Cと整式Q(x)が存在することを示せ。\\
x^n=(x-\alpha)(x-\beta)^2Q(x)+A(x-\alpha)(x-\beta)+B(x-\alpha)+C\\
(2)(1)のA,B,Cをn,\alpha,\betaを用いて表せ。\\
(3)(2)のAについて、nと\alphaを固定して、\betaを\alphaに近づけたときの極限\\
\lim_{\beta \to \alpha}Aを求めよ。
\end{eqnarray}
2022九州大学理系過去問
愛媛大(医)合同式で楽々
単元:
#数A#大学入試過去問(数学)#約数・倍数・整数の割り算と余り・合同式#愛媛大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$33^{20}$を90で割った余りを求めよ.
愛媛大(医)過去問
この動画を見る
$33^{20}$を90で割った余りを求めよ.
愛媛大(医)過去問
福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{130pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{5}とする。m,nの値を求めよ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^5とする。bの値をaを用いて表せ。
\end{eqnarray}
2022神戸大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{130pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{5}とする。m,nの値を求めよ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^5とする。bの値をaを用いて表せ。
\end{eqnarray}
2022神戸大学文系過去問
福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
【シンプルな問題の実態は…?】整数:大東文化大学第一高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$300$を$2$けたの自然数$N$で割ると,商があまりの$2$倍になった.
$N$を求めよ.
大東文化第一高校過去問
この動画を見る
$300$を$2$けたの自然数$N$で割ると,商があまりの$2$倍になった.
$N$を求めよ.
大東文化第一高校過去問
下4桁!でも簡単
合同式の基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
この動画を見る
m,nを自然数とする.
$ n^2-m!=2001 $を満たす(m,n)をすべて求めよ.
整数問題【一橋大学】【数学 入試問題】
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。
一橋大過去問
この動画を見る
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。
一橋大過去問
簡単な問題
単元:
#数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.
$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.
$ x^3+y^3+z^3$の値をa,bで表せ.
【まず、2分でOK!一度は当たりたい!】整数:八代白百合学園高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
できるだけ小さい自然数$n$をかける.
できた数が,ある整数の2乗になる.
自然数$n$を求めなさい.
八代白百合学園高等学校過去問
この動画を見る
できるだけ小さい自然数$n$をかける.
できた数が,ある整数の2乗になる.
自然数$n$を求めなさい.
八代白百合学園高等学校過去問
整数の良問だよ!やや難?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,b,cは非負整数である.
$ a!+5^b=7^c $を満たす(a,b,c)をすべて求めよ.
この動画を見る
a,b,cは非負整数である.
$ a!+5^b=7^c $を満たす(a,b,c)をすべて求めよ.
整数の良問だよ!やや難?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は非負整数である.
$a!+5^b=7^c$を満たす$(a,b,c)$をすべて求めよ.
この動画を見る
$a,b,c$は非負整数である.
$a!+5^b=7^c$を満たす$(a,b,c)$をすべて求めよ.
素数に関する整数問題
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^3+5$が素数となる素数xは何コ?
京都教育大学附属高等学校
この動画を見る
$x^3+5$が素数となる素数xは何コ?
京都教育大学附属高等学校
福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。 \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。 \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。 \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。 \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
【足元をすくわれるな!】整数:八代白百合学園高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えなさい.
$-2.7$より大きく$\dfrac{14}{3}$より小さい整数は全部で何個あるか.
八代白百合学園高等学校過去問
この動画を見る
次の問いに答えなさい.
$-2.7$より大きく$\dfrac{14}{3}$より小さい整数は全部で何個あるか.
八代白百合学園高等学校過去問
解けるように作られた問題 ガウス少年なら一瞬
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ f(x)=\dfrac{25^x}{25^x+5}$である.
$ f \left(\dfrac{1}{100}\right)+f \left(\dfrac{2}{100}\right)+
・・・・・・+f \left(\dfrac{98}{100}\right)+\left(\dfrac{99}{100}\right)$の値を求めよ.
この動画を見る
$ f(x)=\dfrac{25^x}{25^x+5}$である.
$ f \left(\dfrac{1}{100}\right)+f \left(\dfrac{2}{100}\right)+
・・・・・・+f \left(\dfrac{98}{100}\right)+\left(\dfrac{99}{100}\right)$の値を求めよ.
【考え方が理解で得意になる!!】合同式がこの一本でできるようになる!プチ演習付き〔数学、高校数学〕
基本問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$m$をすべて求めよ.
$\dfrac{8^m-2^m}{6^m-3^m}=2$
この動画を見る
整数$m$をすべて求めよ.
$\dfrac{8^m-2^m}{6^m-3^m}=2$
ちょっと難しいか...?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
32,7,105,98,64,606,73
この中から2つの整数を選ぶとその差が必ず6で割り切れるものがあることを説明せよ
この動画を見る
32,7,105,98,64,606,73
この中から2つの整数を選ぶとその差が必ず6で割り切れるものがあることを説明せよ
ざ・見掛け倒し
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
この動画を見る
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
Q:鳩の巣原理の解説して下さい
素数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^4-11n^2+49$が素数となる整数$n$を求めよ.
この動画を見る
$n^4-11n^2+49$が素数となる整数$n$を求めよ.
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$
この動画を見る
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$