整数の性質
【除法はこれでマスター】整式の除法のやり方となんで必要なのかを解説!〔高校数学 数学〕
整数の基本問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ab+cd$が$a-c$の倍数ならば,
$ad+bc$も$a-c$の倍数であることを示せ.
$a,b,c,d$は自然数である.
この動画を見る
$ab+cd$が$a-c$の倍数ならば,
$ad+bc$も$a-c$の倍数であることを示せ.
$a,b,c,d$は自然数である.
大学入試問題#39 東海大学医学部(2021) 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師:
ますただ
問題文全文(内容文):
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。
出典:2021年東海大学医学部 入試問題
この動画を見る
$n:$自然数
$n^3+100$が$n+10$で割り切れるような最大の$n$の値を求めよ。
出典:2021年東海大学医学部 入試問題
ただの三次方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
この動画を見る
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
#27 数検1級1次 過去問 整数問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$x,y:$正の整数
$x+y=316$
$x:13$の倍数
$y:11$の倍数
をみたす組$(x,y)$をすべて求めよ。
この動画を見る
$x,y:$正の整数
$x+y=316$
$x:13$の倍数
$y:11$の倍数
をみたす組$(x,y)$をすべて求めよ。
変な指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
この動画を見る
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
この動画を見る
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
良問だぜ!自画自賛
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
九州大の過去問をパクって問題作ってみた
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
この動画を見る
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
指数方程式 解は1つではない
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^x・2^{\frac{6}{x}}=72$
この動画を見る
実数解を求めよ.
$3^x・2^{\frac{6}{x}}=72$
見掛け倒しの対数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_{\log_6(x-3)}81=4$
この動画を見る
これを解け.
$\log_{\log_6(x-3)}81=4$
連続する五つの整数から一つ除く
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
この動画を見る
連続する5つの整数がある。そのうち1つを除いた4つの整数の和は2017となる。
除いた数を求めよ。
明治大学付属明治高等学校
いい問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(a,b,c,d)$をすべて求めよ.
$(a+bi)(c+di)=7+24i$
この動画を見る
自然数$(a,b,c,d)$をすべて求めよ.
$(a+bi)(c+di)=7+24i$
不思議な方程式。優秀な視聴者様!疑問に答えて!
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x$は実数である.
$x^{2x}=1$
この動画を見る
これを解け.$x$は実数である.
$x^{2x}=1$
ウィルソンの定理
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.
$100!$を$101$で割った余りを求めよ.
この動画を見る
$22!$を$23$で割った余りを求めよ.
$100!$を$101$で割った余りを求めよ.
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$2^{3^n}+1$は$3^{n+1}$で割り切れ,$3^{n+2}$では割り切れないことを示せ.
この動画を見る
$n$は自然数とする.
$2^{3^n}+1$は$3^{n+1}$で割り切れ,$3^{n+2}$では割り切れないことを示せ.
【ポイントは2つ!時間は有限!】整数:同志社高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 同志社高等学校
$a〇b=a-b$
$a*b=(a-1)(b-1)$
のように定めるとき
$\lbrace (2x-1) 〇(x+1)\rbrace$
$*\lbrace (3x-4y^2) 〇(3x-5y^2)\rbrace=15$
を満たす正の整数の組(x, y)をすべて求めよ。
この動画を見る
入試問題 同志社高等学校
$a〇b=a-b$
$a*b=(a-1)(b-1)$
のように定めるとき
$\lbrace (2x-1) 〇(x+1)\rbrace$
$*\lbrace (3x-4y^2) 〇(3x-5y^2)\rbrace=15$
を満たす正の整数の組(x, y)をすべて求めよ。
高校入試ではめずらしい整数問題
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$n^2+n$が100の倍数となる最も小さい自然数nは?
熊本マリスト学園高等学校
この動画を見る
$n^2+n$が100の倍数となる最も小さい自然数nは?
熊本マリスト学園高等学校
福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件
単元:
#数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1 \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$
または
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。
$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。
2021明治大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$(1)$a$と$b$を正の整数とし、$f(x)=ax^2-bx+4$とおく。2次方程式$f(x)=0$は
異なる2つの実数解をもつとする。
$(\textrm{a})$2次方程式$f(x)=0$の2つの解がともに整数であるとき
$\left\{
\begin{array}{1}
a=1 \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.$
または
$\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\$
である。
$(\textrm{b})b=7$とする。2次方程式$f(x)=0$の2つの解のうち一方が整数であるとき、
$a=\boxed{\ \ エ\ \ }$であり、$f(x)=0$の2つの解は
$x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}$
である。
2021明治大学理工学部過去問
早稲田高等学院 整数 数字がない!!
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = m \\
xy = n \\
x>y\\
m,nは素数
\end{array}
\right.
\end{eqnarray}
$
自然数x,y,m,nを求めよ
早稲田大学高等学院
この動画を見る
$
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = m \\
xy = n \\
x>y\\
m,nは素数
\end{array}
\right.
\end{eqnarray}
$
自然数x,y,m,nを求めよ
早稲田大学高等学院
油断禁物!!整数問題 大阪星光学院
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-28x+160$が素数となる整数xを求めよ。
この動画を見る
$x^2-28x+160$が素数となる整数xを求めよ。
【5分で理解する平方根と整数の性質!】整数:中央大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#平方根#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 中央大学附属高等学校
$\sqrt{ 60(n+1)(n^2-1)}$
が整数となるような
2桁の整数$n$をすべて求めなさい。
この動画を見る
入試問題 中央大学附属高等学校
$\sqrt{ 60(n+1)(n^2-1)}$
が整数となるような
2桁の整数$n$をすべて求めなさい。
指数方程式だよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解$x$を求めよ.
$4・3^{x+2}+14・5^x~25^x+49$
この動画を見る
実数解$x$を求めよ.
$4・3^{x+2}+14・5^x~25^x+49$
整数問題2022 Σ10^10^k mod7
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
この動画を見る
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
解けるようにできた方程式
慶應女子高校 整数問題 慶應大学理工学部の過去問!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
平方の和で表せる2つの数の積は平方の和で表せることを証明せよ.
1962慶応理工過去問
この動画を見る
平方の和で表せる2つの数の積は平方の和で表せることを証明せよ.
1962慶応理工過去問
【5分で知る!証明問題のストーリー!】整数:明治大学付属中野高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)#明治大学付属明治高等学校#明治大学付属中野高等学校#明治大学付属中野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 明治大学付属中野高等学校
3けたの正の整数において、上2けたの数から一の位の数を
引いた数が11の倍数
もとの3けたの 整数は、11の倍数 である。
この性質が成り立つわけを説明しなさい。
※3けたの正の整数の百の位の数をx、十の位の数をy、一の位の数をzとする
この動画を見る
入試問題 明治大学付属中野高等学校
3けたの正の整数において、上2けたの数から一の位の数を
引いた数が11の倍数
もとの3けたの 整数は、11の倍数 である。
この性質が成り立つわけを説明しなさい。
※3けたの正の整数の百の位の数をx、十の位の数をy、一の位の数をzとする
一橋大(類)整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.
一橋大(類)過去問
この動画を見る
$n^n+1$が7の倍数となる自然数$n$をすべて求めよ.
ただし,$n\leqq 50$である.
一橋大(類)過去問
【5分でOK!思考力、対応力を高めるために!】整数:日本大学習志野高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)#日本大学習志野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学習志野高等学校
自然数Nの一の位を$《N》$で表すとき
$《2^{2021}》+《2^{117}》+《2^{56}》=$▭
この動画を見る
入試問題 日本大学習志野高等学校
自然数Nの一の位を$《N》$で表すとき
$《2^{2021}》+《2^{117}》+《2^{56}》=$▭
地道にやれば出るよね。パッと出す方法もいろいろありそう
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$のとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x}+\dfrac{x^4}{1+x^3}$の値を求めよ.
この動画を見る
$x^4+x^3+x^2+x+1=0$のとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x}+\dfrac{x^4}{1+x^3}$の値を求めよ.