整数の性質
分母に文字がある方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2+1+\frac{100}{x^2+1}=20$
この動画を見る
方程式を解け
$x^2+1+\frac{100}{x^2+1}=20$
福田のおもしろ数学032〜100個連続合成数が並ぶところを見つけよう
単元:
#数A#整数の性質#その他#その他#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続整数の中で100個連続合成数が並ぶところを見つけよ
※合成数とは、素数以外の整数
この動画を見る
連続整数の中で100個連続合成数が並ぶところを見つけよ
※合成数とは、素数以外の整数
福田のおもしろ数学031〜おつりなしでは買えない値段の種類〜6円玉と7円玉だけしかない国のお話
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数A#整数の性質#ユークリッド互除法と不定方程式・N進法
指導講師:
福田次郎
問題文全文(内容文):
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?
この動画を見る
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?
7で割ったときのあまりを表せ。宮城県
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
aを29から34までの整数とする。
これを7で割ったときの余りをaの式で表せ。
宮城県
この動画を見る
aを29から34までの整数とする。
これを7で割ったときの余りをaの式で表せ。
宮城県
整数問題 昭和学院秀英
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
この動画を見る
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
11の倍数
分母が文字入っている方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\frac{1}{x} - \frac{1}{3x} = \frac{2}{3}$
この動画を見る
方程式を解け
$\frac{1}{x} - \frac{1}{3x} = \frac{2}{3}$
整数問題だよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$
の下2桁が00になる3桁の自然数nの最大値最小値を求めよ.
この動画を見る
$n^2+n+144$
の下2桁が00になる3桁の自然数nの最大値最小値を求めよ.
整数問題だよ
整数問題だよ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値を求めよ.
この動画を見る
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値を求めよ.
2024年共通テスト解答速報〜数学ⅠA第4問整数の性質〜福田の入試問題解説
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。
2024共通テスト過去問
この動画を見る
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。
2024共通テスト過去問
福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める
単元:
#数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?
ジュニア数学オリンピック過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?
ジュニア数学オリンピック過去問
福田のおもしろ数学013〜ジュニア数学オリンピックから〜条件を満たす6個の変数は
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c,d,e,f$は相異なる1以上9以下の整数
$ab=cd=e+f$のとき、
$a+b+c+d+e+f$
として考えられる値をすべて求めよ.
ジュニア数学オリンピック過去問
この動画を見る
$a,b,c,d,e,f$は相異なる1以上9以下の整数
$ab=cd=e+f$のとき、
$a+b+c+d+e+f$
として考えられる値をすべて求めよ.
ジュニア数学オリンピック過去問
1729見て理系は嬉しいの?
福田のおもしろ数学011〜あけましておめでとうございます〜2024の階乗は末尾に0が何個並ぶか
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
2024 !の末尾に並ぶ 0 の個数を求めよ。
この動画を見る
2024 !の末尾に並ぶ 0 の個数を求めよ。
福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
誰もがハマる!? 方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$x+\frac{x}{x}+\frac{x}{x+\frac{x}{x}}=1$
この動画を見る
方程式を解け
$x+\frac{x}{x}+\frac{x}{x+\frac{x}{x}}=1$
「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】
単元:
#数A#整数の性質#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
この動画を見る
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
整数問題 大阪府
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?
2020大阪府
この動画を見る
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?
2020大阪府
【共通テスト】数学IA 第4問整数がめっちゃ簡単になる本質テクニック、教えます(2023年本試)
単元:
#数A#整数の性質#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第4問整数が簡単になる本質テクニック、解説動画です
$37x+26y=3$の整数解($x,y$)をすべて求めよ
この動画を見る
【共通テスト】数学IA 第4問整数が簡単になる本質テクニック、解説動画です
$37x+26y=3$の整数解($x,y$)をすべて求めよ
整数問題 戸山高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
nは素数
$\frac{100}{n+3}$が整数となるnの値をすべて求めよ。
戸山高等学校
この動画を見る
nは素数
$\frac{100}{n+3}$が整数となるnの値をすべて求めよ。
戸山高等学校
ウィルソンの定理
ウィルソンの定理
単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る
$(p-1)!+1$は$p$の倍数であることを示せ.
素数か?
福田の数学〜約数の個数を返す関数の性質〜北里大学2023年医学部第1問(4)〜約数の個数と整数解
単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。
2023杏林大学医過去問
この動画を見る
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。
2023杏林大学医過去問
福田の数学〜整数部分の評価が難しい問題〜北里大学2023年医学部第1問(3)〜漸化式と整数部分の評価
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。
2023北里大学医過去問
この動画を見る
$a=3+\sqrt{10},b=3-\sqrt{10}$とし、正の整数nに対して$A_n=a^n+b^n$とおく。
このとき、$A_{2} ,A_{3}$の値はそれぞれ$A_{2}=\fbox{ク},A_{3}=\fbox{ケ}$であり、
$A_{n+2}$を$A_{n+1},A_{n}$を用いて表すと$A_{n+2}=\boxed{コ}$である。
また、$a^{111}$の整数部分を$k$とするとき、kを10で割ると$\boxed{サ}$余る。
2023北里大学医過去問
効率よく解を絞り込め
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$9a^2-4b^2=2160$
を満たす整数、a,bの組をすべて求めよ.
この動画を見る
$9a^2-4b^2=2160$
を満たす整数、a,bの組をすべて求めよ.
整数問題 日比谷高校
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{2310}{n}$が素数となる自然数nはいくつあるか。
日比谷高等学校
この動画を見る
$\frac{2310}{n}$が素数となる自然数nはいくつあるか。
日比谷高等学校
福田の数学〜積が等しくなる魔方陣を作ろう〜慶應義塾大学2023年環境情報学部第3問(1)〜積が等しくなる魔方陣
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
※図は動画内
(1)図 1 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の積がいずれも等しくなるように、相異なる正の整数を 1 つずっ割り当てる。ただし、 4 と 9 は図 1 のように割り振られており、$\fbox{ア}く\fbox{イ}$となっているものとする。$\fbox{ア},\fbox{イ}\fbox{ウ}$に入る数を求めなさい。
慶應義塾大学環境情報学部過去問
この動画を見る
※図は動画内
(1)図 1 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の積がいずれも等しくなるように、相異なる正の整数を 1 つずっ割り当てる。ただし、 4 と 9 は図 1 のように割り振られており、$\fbox{ア}く\fbox{イ}$となっているものとする。$\fbox{ア},\fbox{イ}\fbox{ウ}$に入る数を求めなさい。
慶應義塾大学環境情報学部過去問
【共テ数学IA】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(二次関数、命題と集合、整数の性質、確率、図形)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】裏技集紹介動画です(二次関数、命題と集合、整数の性質、確率、図形)
$y=5x^2-21x+30=5(x ???)^2$
$(4x+1)(2x-5)=???$
$6x^2-11x-35=(???)(???)$
この動画を見る
【共通テスト数学IA】裏技集紹介動画です(二次関数、命題と集合、整数の性質、確率、図形)
$y=5x^2-21x+30=5(x ???)^2$
$(4x+1)(2x-5)=???$
$6x^2-11x-35=(???)(???)$