整数の性質
京都大(改)良問再投稿 3で割った余りを秒で出す
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
この動画を見る
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
整数問題(自作)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
この動画を見る
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
千葉大 素数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
この動画を見る
$a,b$は2以上の自然数
(1)
$a^b-1$が素数なら$a=2,b$は素数。示せ
(2)
$a^b+1$が素数なら$b=2^c(c$は自然数$)$示せ
出典:2007年千葉大学 過去問
早稲田大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ
出典:早稲田大学 過去問
この動画を見る
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ
出典:早稲田大学 過去問
Math Video: How To Solve Congruent Expressions Most Easily
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学 合同式を英語で解説
この動画を見る
数学 合同式を英語で解説
【数学A】合同式(mod)の総まとめ【誰でも17分でマスター】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】合同式(mod)の総まとめ動画です
-----------------
$x+5 \equiv (mod7)$を$x \equiv a(mod m)$の形で示せ。
$5x \equiv 3(mod4)$を$x \equiv a(mod m)(a \lt m)$の形で示せ。
この動画を見る
【数学A】合同式(mod)の総まとめ動画です
-----------------
$x+5 \equiv (mod7)$を$x \equiv a(mod m)$の形で示せ。
$5x \equiv 3(mod4)$を$x \equiv a(mod m)(a \lt m)$の形で示せ。
徳島大(医)整数問題 約数の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
$n^2(n^2+8)$の正の約数が10個
$n$をすべて求めよ。
出典:2019年徳島大学医学部 過去問
この動画を見る
$n$自然数
$n^2(n^2+8)$の正の約数が10個
$n$をすべて求めよ。
出典:2019年徳島大学医学部 過去問
整数の性質が苦手な人のための動画【互いに素・a=ga'・ab=gl】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。
2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。
3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
この動画を見る
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。
2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。
3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
帝京大(医)漸化式 合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
この動画を見る
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
整数問題 チャレンジ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
この動画を見る
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
息抜き 整数問題
息抜き整数問題(でもそんなに簡単じゃないよ)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
この動画を見る
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
息抜き 約数の個数 合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
この動画を見る
$2020^{2020}$の約数の個数を$N$
$N$を2019で割った余りを求めよ
息抜き 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る
$2020^{2020}$を$2019^2$で割った余りを求めよ
熊本大(医)整数・数列・二次関数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
この動画を見る
$7^n$の一の位を$a_n(n$自然数$)$
(1)
$a_{99}$
(2)
$-n^2+2na_n$の最大値とそのときの$n$
出典:1989年熊本大学医学部 過去問
九州大 整数問題 良問再投稿
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
文系
$2^{p-1}-1=p^k$
$p$素数、$k$非負整数
理系
$2^{p-1}-1=pq^2$
$p,q$素数
出典:2015年九州大学 過去問
この動画を見る
文系
$2^{p-1}-1=p^k$
$p$素数、$k$非負整数
理系
$2^{p-1}-1=pq^2$
$p,q$素数
出典:2015年九州大学 過去問
東大 不定方程式不等式
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2=n^2-6 \\
a+b+c+d \leqq n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}$
0以上の整数$(a,b,c,d,n)$の組をすべて求めよ
出典:1986年東京大学 過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2=n^2-6 \\
a+b+c+d \leqq n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}$
0以上の整数$(a,b,c,d,n)$の組をすべて求めよ
出典:1986年東京大学 過去問
滋賀医科大 複雑な問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
この動画を見る
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a+3^b=n^2$を満たす自然数の組$(a,b,c)$は無限にあることを示せ
この動画を見る
$3^a+3^b=n^2$を満たす自然数の組$(a,b,c)$は無限にあることを示せ
約数の総積
単元:
#数A#整数の性質#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$N=p^lq^mr^n$
$p,q,r$素数
$l,m.n$自然数
$N$の正の約数すべての積を求めよ
この動画を見る
$N=p^lq^mr^n$
$p,q,r$素数
$l,m.n$自然数
$N$の正の約数すべての積を求めよ
数学オリンピック予選 整数問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
この動画を見る
$a,b$自然数 $a \lt b$
$a$と$b$は互いに素
$a \times b=29!$を満たす$(a,b)$の組はいくつか求めよ
出典:数学オリンピック 予選問題
縦の筆算厳禁 整数問題 ピタゴラス数
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a+4^b=5^c(a,b,c \epsilon \mathbb{ N })$
$(a,b,c)$をすべて求めよ
この動画を見る
$3^a+4^b=5^c(a,b,c \epsilon \mathbb{ N })$
$(a,b,c)$をすべて求めよ
東北大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$
(1)
$a,b$はともに正、示せ
(2)
$b \gt 1$のとき、$a$偶数
(3)
$(a,b)$すべて求めよ
出典:2018年東北大学 過去問
この動画を見る
$3^a-2^n=1$ $a,b \varepsilon Z$
(1)
$a,b$はともに正、示せ
(2)
$b \gt 1$のとき、$a$偶数
(3)
$(a,b)$すべて求めよ
出典:2018年東北大学 過去問
合同式でさらっと 良問再投稿 弘前大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ
(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ
出典:弘前大学 過去問
この動画を見る
(1)
$5^{2n-1}+7^{2n-1}+23^{2n-1}$
35の倍数を示せ
(2)
$3^{3n-2}+5^{3n-1}$
7の倍数であることを示せ
出典:弘前大学 過去問
2020年問題 2020整数問題 その2
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
この動画を見る
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
2020年問題 整数問題2020
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$自然数、すべて求めよ
$a^2+b^2=2020$
この動画を見る
$a,b$自然数、すべて求めよ
$a^2+b^2=2020$
合同式 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_n=2^n+3^n+1$
(1)
$n$が6の倍数のとき、$a_n$は7の倍数でないことを示せ
(2)
$a_n$が7の倍数になる条件は?
この動画を見る
$n$自然数
$a_n=2^n+3^n+1$
(1)
$n$が6の倍数のとき、$a_n$は7の倍数でないことを示せ
(2)
$a_n$が7の倍数になる条件は?
大阪市立大 三次方程式の整数解
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a$自然数、$b$素数
$x^3+ax^2-5x+b=0$が少なくとも1つの整数解をもつ、3つの解を求めよ。
出典:大阪市立大学 過去問
この動画を見る
$a$自然数、$b$素数
$x^3+ax^2-5x+b=0$が少なくとも1つの整数解をもつ、3つの解を求めよ。
出典:大阪市立大学 過去問
一橋大 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数
(1)
$n^2$と$2n+1$は互いに素、示せ
(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ
出典:1992年一橋大学 過去問
この動画を見る
$n$は自然数
(1)
$n^2$と$2n+1$は互いに素、示せ
(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ
出典:1992年一橋大学 過去問