数A
階乗の虫食い算
仙台育英 正四面体の内接球の半径
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
内接球の半径=?
*図は動画内参照
仙台育英学園高等学校
この動画を見る
内接球の半径=?
*図は動画内参照
仙台育英学園高等学校
トランプシャッフルして,元に戻る確率は?
単元:
#数A#場合の数と確率#場合の数#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
トランプを適当にシャッフルしてA~Kまで52枚全部順番で揃う確率はどのくらいですか?
この動画を見る
下記質問の解説動画です
トランプを適当にシャッフルしてA~Kまで52枚全部順番で揃う確率はどのくらいですか?
福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。
2022早稲田大学社会科学部過去問
この動画を見る
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。
2022早稲田大学社会科学部過去問
整数問題 基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2P^4-P^2+16$が平方数となるような素数$P$をすべて求めよ.
この動画を見る
$2P^4-P^2+16$が平方数となるような素数$P$をすべて求めよ.
福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。
2022早稲田大学社会科学部過去問
この動画を見る
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。
2022早稲田大学社会科学部過去問
福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。
2022早稲田大学商学部過去問
この動画を見る
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。
2022早稲田大学商学部過去問
気付けば一瞬!! 正六角形 九州学院(熊本)
単元:
#数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AG:GC=?
*図は動画内参照
九州学院高等学校(改)
この動画を見る
AG:GC=?
*図は動画内参照
九州学院高等学校(改)
福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える
単元:
#数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$
空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。
2022早稲田大学商学部過去問
この動画を見る
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$
空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。
2022早稲田大学商学部過去問
特殊な方程式
決め手は角度。大阪桐蔭
単元:
#数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△CDQ=?
*図は動画内参照
大阪桐蔭高等学校
この動画を見る
△CDQ=?
*図は動画内参照
大阪桐蔭高等学校
メネラウスの定理でも良いと思います。近江高校(滋賀)
単元:
#数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BF:FC=?
*図は動画内参照
近江高等学校
この動画を見る
BF:FC=?
*図は動画内参照
近江高等学校
ロト7全パターン買ったらどうなるか?
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
ロト7を全パターン買ったらプラスですか?マイナスですか?
この動画を見る
下記質問の解説動画です
ロト7を全パターン買ったらプラスですか?マイナスですか?
【経験することが何よりも大切!】整数:和歌山県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{\dfrac{20}{n}}$の値が自然数となるような自然数$n$をすべて求めなさい.
和歌山県高校過去問
この動画を見る
$ \sqrt{\dfrac{20}{n}}$の値が自然数となるような自然数$n$をすべて求めなさい.
和歌山県高校過去問
ロト7全パターン買ったらプラス?
絶対に取りたい整数問題!分からない時はとにかく実験あるのみ【早稲田大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n^2+1,2n^2+3,6n^2+5$がすべて素数となる自然数$n$は$n=1,2$のみであることを示せ。
早稲田大過去問
この動画を見る
$n^2+1,2n^2+3,6n^2+5$がすべて素数となる自然数$n$は$n=1,2$のみであることを示せ。
早稲田大過去問
絶対値 中1も解ける!! 海星高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ある整数xの絶対値が4より小さいという。
xは全部でいくつの整数が考えられるか。
海星高校
この動画を見る
ある整数xの絶対値が4より小さいという。
xは全部でいくつの整数が考えられるか。
海星高校
福田の数学〜早稲田大学2022年教育学部第2問〜サイコロの目の積の約数の個数と確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large\boxed{2}}$サイコロをn回投げて出た目の積をSとする。Sの正の約数の個数がk個となる
確率を$P_k$とする。次の問いに答えよ。
(1)$P_3$を$n$の式で表せ。
(1)$P_4$を$n$の式で表せ。
2022早稲田大学教育学部過去問
この動画を見る
${\large\boxed{2}}$サイコロをn回投げて出た目の積をSとする。Sの正の約数の個数がk個となる
確率を$P_k$とする。次の問いに答えよ。
(1)$P_3$を$n$の式で表せ。
(1)$P_4$を$n$の式で表せ。
2022早稲田大学教育学部過去問
7で割ったあまり 札幌大谷
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$10^{2021}$を7で割った余りは?
札幌大谷高等学校(改)
この動画を見る
$10^{2021}$を7で割った余りは?
札幌大谷高等学校(改)
変形できるかできないかが分かれ目 聖望学園
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{6 \sqrt n}{n}$が自然数となる自然数nは何個?
聖望学園高等学校
この動画を見る
$\frac{6 \sqrt n}{n}$が自然数となる自然数nは何個?
聖望学園高等学校
ルートが入ってる方程式 日大三
単元:
#数学(中学生)#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\sqrt 2 x = \frac{1}{\sqrt 2} - \frac{1}{\sqrt 3}$
日本大学第三高等学校
この動画を見る
方程式を解け
$\sqrt 2 x = \frac{1}{\sqrt 2} - \frac{1}{\sqrt 3}$
日本大学第三高等学校
普通の中学生が解くには難しい 興南高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
5つの数字0,1,2,6,7から異なる3つの数字を選び、並べて3ケタの数を作とき
5で割ると2余る数は何個できるか?
興南高等学校
この動画を見る
5つの数字0,1,2,6,7から異なる3つの数字を選び、並べて3ケタの数を作とき
5で割ると2余る数は何個できるか?
興南高等学校
整数問題 海星高校(長崎)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{80}{30 - 2m}$が自然数になる整数mの個数を求めよ。
海星高校
この動画を見る
$\frac{80}{30 - 2m}$が自然数になる整数mの個数を求めよ。
海星高校
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
この動画を見る
$ n^2+3,n^2+7,n^2+13,n^2+19$のすべてが素数となる整数nをすべて求めよ.
【高校数学】n進法の足し算引き算をどこよりも丁寧に 5-12【数学A】
ただの分数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
素数になる2次式
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
整数問題が苦手な人必見!大事な考えが詰まった良問!【お茶の水女子大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。
お茶の水女子大過去問
この動画を見る
(1)$k^2+2$が素数となるような素数$k$をすべて見つけよ。また,それ以外にないことを示せ。
(2)整数$l$が5で割り切れないとき,$l^4-1$が5で割り切れることを示せ。
お茶の水女子大過去問
素数製造マシーン 素数とならないものを答えよ 洛星(改)
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ
洛星高等学校(改)
この動画を見る
$p=n^2+n+41$
100以下の自然数nのうちpが素数とならないものを2つ答えよ
洛星高等学校(改)
1+1=10が成り立つ世界...
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1+1=10
成り立つ世界の解説動画です
この動画を見る
1+1=10
成り立つ世界の解説動画です