数A
立方根の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解$x$を求めよ.
$\sqrt[3]{x+28}-\sqrt[3]{x-28}=2$
この動画を見る
実数解$x$を求めよ.
$\sqrt[3]{x+28}-\sqrt[3]{x-28}=2$
割って余る問題 整数問題 日大習志野
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
200より大きい自然数を17で割った。
商と余りが等しくなる自然数は全部で何コ?
日本大学習志野高等学校
この動画を見る
200より大きい自然数を17で割った。
商と余りが等しくなる自然数は全部で何コ?
日本大学習志野高等学校
名古屋大学文学部卒のゆる言語学者にオイラーの公式は理解できるのか?
高校への数学執筆者 秋田洋和先生が解説!!(岡山県)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。
岡山県
この動画を見る
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。
岡山県
【全パターンまとめ】確率の全パターンをすべて解説!!【高校数学 数学】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①
10本のクジの中にアタリが4本ある。
同時に「3本」引くとき、少なくとも1本はアタリが出る確率は?
②
動画の図のような色と数字が書かれた玉が袋に入っている。
この袋から玉を1つ取り出す。
取り出した玉が赤色であった時に書かれている数が偶数である確率は?
この動画を見る
①
10本のクジの中にアタリが4本ある。
同時に「3本」引くとき、少なくとも1本はアタリが出る確率は?
②
動画の図のような色と数字が書かれた玉が袋に入っている。
この袋から玉を1つ取り出す。
取り出した玉が赤色であった時に書かれている数が偶数である確率は?
気付いたら瞬殺!!
福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}
2021慶應義塾大学経済学部過去問
福田のわかった数学〜高校1年生036〜部屋割り論法
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(1)\\
100個の自然数がある。この中にその差が99で割り切れるような\\
2個の自然数が存在することを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(1)\\
100個の自然数がある。この中にその差が99で割り切れるような\\
2個の自然数が存在することを示せ。
\end{eqnarray}
座標平面上の円 気づけば一瞬
【全パターンこの一本でOK!】場合の数の全手法まとめ!!(順列、組み合わせ、重複順列、円順列、樹形図)【高校数学 数学】
福田の数学〜慶應義塾大学2021年環境情報学部第3問〜多面体の面の色の変化と確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} (1)各面が白色あるいは黒色で塗られた正四面体について、いずれか1つの面を等確率\\
\frac{1}{4}で選択し、選択した面を除いた3つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗りなおす試行を繰り返す。正四面体の全てが白色の状態から開始するとき\\
(\textrm{a})2つの面が白色、2つの面が黒色になる最小の試行回数は\ \boxed{\ \ アイ\ \ }\ であり、\\
この試行回数で同状態が実現する確率は\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ キク\ \ }であり、この試行回数で\\
同状態が実現する確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(2)各面が白色あるいは黒色で塗られた立方体について、いずれか1つの面を等確率\frac{1}{6}で\\
選択し、選択した面を除いた5つの面の色を白色であれば黒色に、黒色であれば\\
白色に塗り直す試行をくり返す。立方体のすべての面が白色の状態から開始するとき\\
(\textrm{a})3つの面が白色、3つの面が黒色になる最小の試行回数は\boxed{\ \ スセ\ \ }であり、この\\
試行回数で同状態が実現する確率は\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}である。\\
(\textrm{b})すべての面が黒色になる最小の試行回数は\boxed{\ \ テト\ \ }であり、この試行回数で同状態\\
が実現する確率は\frac{\boxed{\ \ ナニヌ\ \ }}{\boxed{\ \ ネノハ\ \ }}である。
\end{eqnarray}
自然数の和 日大習志野
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1からnまでの自然数の和=210
n=?(n:自然数)
日本大学習志野高等学校
この動画を見る
1からnまでの自然数の和=210
n=?(n:自然数)
日本大学習志野高等学校
福田の数学〜慶應義塾大学2021年環境情報学部第2問〜ポーカーの役が揃う場合の数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} ジョーカーを除いた52枚のトランプでポーカーを行う。トランプには♠♧♦♡の4つの\\
スートのそれぞれに1から13までの数が書かれた13枚のカードがある。(1,11,12,13の\\
代わりに、A,J,Q,Kの記号を用いることが多い)\\
「10,J,Q,K,A」の組合せはストレートやストレートフラッシュとして認めるが、\\
Aを超えて「J,Q,K,A,2」のように2まで含めるものは認めない。\\
52枚のカードから5枚を抜き出す組合せの数は{}_{52}\textrm{C}_5=2598960通りあるが、それが\\
ストレートフラッシュとなる組合せの数を求めてみよう。ストレートフラッシュの\\
5枚のカードの最小の数は1,2,\ldots,\boxed{\ \ アイ\ \ }のどれかであるから、それぞれのスート\\
ごとに\boxed{\ \ アイ\ \ }通り考えられる。よって、4×\boxed{\ \ アイ\ \ }=\boxed{\ \ ウエ\ \ }通りのストレート\\
フラッシュの組合せがある。また、ストレートについては、数は順番に並んでいるが、\\
スートがそろっていない組合せの数なので\boxed{\ \ オカキクケ\ \ }通りある。\\
次に、フルハウスとなる組合せの数を求めてみよう。同じ数のカードが3枚と2枚の\\
ふたつの組があり、3枚の組を選ぶ組合せ\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3、残り2枚のカードを選ぶ組合せ\\
は\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2であるから、フルハウスとなる組合せの数は\\
\boxed{\ \ コサ\ \ }×{}_4\textrm{C}_3×\boxed{\ \ シス\ \ }×{}_4\textrm{C}_2=\boxed{\ \ セソタチ\ \ } 通りである。\\
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
福田の数学〜慶應義塾大学2021年環境情報学部第1問〜三角形の内部にある外接している5つの円
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 図(※動画参照)のように三角形ABCの内部に半径1の円が5つ含まれている。4つの円は\\
辺BCに接しながら横一列に互いに接しながら並び、左端の円は辺ABに接し、右端の円は\\
辺ACに接している。また、もう一つの円は、辺ABと辺ACに接し、4つの円の右側の2つ\\
の円に接している。このとき\\
AB=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}BC AC=\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}BC\\
BC=\frac{\boxed{\ \ ケコ\ \ }+\boxed{\ \ サシ\ \ }\sqrt{\boxed{\ \ スセ\ \ }}+\boxed{\ \ ソタ\ \ }\sqrt{\boxed{\ \ チツ\ \ }}}{\boxed{\ \ テト\ \ }} (\boxed{\ \ スセ\ \ } \lt \boxed{\ \ チツ\ \ })\\
である。
\end{eqnarray}
2021慶應義塾大学環境情報学部過去問
対数方程式 華麗に解こう
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^{\log_2 x}+3^{\log_2 \frac{8}{x}}=12$
この動画を見る
これを解け.
$3^{\log_2 x}+3^{\log_2 \frac{8}{x}}=12$
面積の和=❓
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABC+△DEF=?(面積の和)
*図は動画内参照
この動画を見る
△ABC+△DEF=?(面積の和)
*図は動画内参照
【数A】整数の性質:東京大学(理系)2003年 第4問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
この動画を見る
2次方程式$x^2-4x+1=0$の2つの実数解のうち大きいものを$\alpha$,小さいものを$\beta$とす る。$n=1,2,3,...$に対し、$s_n=\alpha^n+\beta^n$とおく。
(1)$s_1,s_2,s_3$を求めよ。ま た、$n\geqq 3$に対し、$s_n$を$s_{n-1}$と$s_{n-2}$で表そう。
(2)$\beta^3$以下の最大の整数を求め よ。
(3)$\alpha^{2003}$以下の最大の整数の1の位の数を求めよ。
整数問題 大阪教育大附属天王寺
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数A,B,Cを求めよ。
$
\begin{eqnarray}
\left\{
\begin{array}{l}
A \div B \times C=12 \\
A \div B - C=1 \\
A \div B =10
\end{array}
\right.
\end{eqnarray}
$
大阪教育大学附属高等学校天王寺校舎
この動画を見る
自然数A,B,Cを求めよ。
$
\begin{eqnarray}
\left\{
\begin{array}{l}
A \div B \times C=12 \\
A \div B - C=1 \\
A \div B =10
\end{array}
\right.
\end{eqnarray}
$
大阪教育大学附属高等学校天王寺校舎
【数A】整数の性質:○○でないの証明は背理法
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
この動画を見る
pが素数のとき、$1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{p}$は整数でないことを証明しよう。
ただの累乗根方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt[x]{4096}-\sqrt[\frac{x}{2}]{2^{3x-6}}+12=0$
この動画を見る
これを解け.
$\sqrt[x]{4096}-\sqrt[\frac{x}{2}]{2^{3x-6}}+12=0$
座標平面 円 角度
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle a=?$
$\angle b=?$
*図は動画内参照
この動画を見る
$\angle a=?$
$\angle b=?$
*図は動画内参照
連立二元二次方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x\neq y$である.
$x^2=1234x+3y$
$y^2=3x+1234y$
$\sqrt{x^2+y^2+9}=?$
この動画を見る
これを解け.$x\neq y$である.
$x^2=1234x+3y$
$y^2=3x+1234y$
$\sqrt{x^2+y^2+9}=?$
弧の長さの和=❓
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{AB}+\stackrel{\huge\frown}{BC} =?$
*図は動画内参照
この動画を見る
$\stackrel{\huge\frown}{AB}+\stackrel{\huge\frown}{BC} =?$
*図は動画内参照
有名問題だよ(多分)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
この動画を見る
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
福田の数学〜早稲田大学2021年人間科学部第2問(3)〜n進法
単元:
#計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)n進法で2021_{(n)}と表される数が、素数であるようなnの最小値を十進法で\\
表すと\boxed{\ \ コ\ \ }となり、合成数である(素数ではない)ようなnの最小値を十進法で\\
表すと\boxed{\ \ サ\ \ }となる。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (3)n進法で2021_{(n)}と表される数が、素数であるようなnの最小値を十進法で\\
表すと\boxed{\ \ コ\ \ }となり、合成数である(素数ではない)ようなnの最小値を十進法で\\
表すと\boxed{\ \ サ\ \ }となる。
\end{eqnarray}
整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
${}_{70} \mathrm{C}_{35}$を$71$で割った余りを求めよ.
${}_{50} \mathrm{C}_{25}$を$51$で割った余りを求めよ.
この動画を見る
${}_{70} \mathrm{C}_{35}$を$71$で割った余りを求めよ.
${}_{50} \mathrm{C}_{25}$を$51$で割った余りを求めよ.
福田の数学〜早稲田大学2021年人間科学部第1問〜異なるペアになる確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)8人のメンバーで、2人組(ペア)を4組作る方法はn通りある。nを100で割った商は\\
\boxed{\ \ ア\ \ }で、余りは\boxed{\ \ イ\ \ }である。\\
\\
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で\\
次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員が\\
くじ引き前と異なるメンバーとペアになる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} である。\\
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)8人のメンバーで、2人組(ペア)を4組作る方法はn通りある。nを100で割った商は\\
\boxed{\ \ ア\ \ }で、余りは\boxed{\ \ イ\ \ }である。\\
\\
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で\\
次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員が\\
くじ引き前と異なるメンバーとペアになる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} である。\\
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。
\end{eqnarray}
2021早稲田大学人間科学部過去問
福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問
【数A】場合の数:2021年高3第1回K塾記述模試
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
この動画を見る
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
福田の数学〜早稲田大学2021年商学部第2問〜空間図形の共通部分
単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 図(※動画参照)のように、1辺の長さが2である立方体ABCD-EFGHの内側に、\\
正方形ABCDに内接する円を底面にもつ高さ2の円柱Vをとる。次の設問に答えよ。\\
(1)立方体の対角線AGと円柱Vの共通部分と得られる線分の長さを求めよ。\\
\\
(2)Wを三角柱ABC-DCGと三角柱AEH-BFGの共通部分とする。\\
円柱Vの側面とWの共通部分に含まれる線分の長さの最大値を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 図(※動画参照)のように、1辺の長さが2である立方体ABCD-EFGHの内側に、\\
正方形ABCDに内接する円を底面にもつ高さ2の円柱Vをとる。次の設問に答えよ。\\
(1)立方体の対角線AGと円柱Vの共通部分と得られる線分の長さを求めよ。\\
\\
(2)Wを三角柱ABC-DCGと三角柱AEH-BFGの共通部分とする。\\
円柱Vの側面とWの共通部分に含まれる線分の長さの最大値を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問