数A - 質問解決D.B.(データベース) - Page 5

数A

【数A】【場合の数と確率】並び替え基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・6個の数字1,2,3,4,5,6から異なる4種の数字を使って4桁の整数を作るとき、次のような整数は何個あるか。
(1)4300より大きい整数
(2)5000より大きい整数

・女子5人、男子3人が1列に並ぶとき、次の並び方は何通りあるか。
(1)女子5人が続いて並ぶ。
(2)女子5人、男子3人がそれぞれ続いて並ぶ。
(3)両端が男子である。
(4)どの男子も隣合わない。

・男子4人、女子4人が男女交互に1列に並ぶ方法は何通りあるか。
この動画を見る 

【数A】【場合の数と確率】組み合わせ考え方の基本 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
この動画を見る 

福田のおもしろ数学407〜a^3+b^3+c^3-3abcの取り得る最小の正の値

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c$に対して

$a^3+b^3+c^3-3abc$

が取り得る最小の正の値を求めよ。

またそのときの$a,b,c$の値は?
この動画を見る 

square root : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{12(15-3m)}$が整数になる正の整数$m$を全て求めよ
この動画を見る 

【ストーリーを読め…!】整数:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数A#高校入試過去問(数学)#数学(高校生)#慶應義塾高等学校
指導講師:
問題文全文(内容文):
$x^2 + (3y - 9)x + y(2y - 9)が素数の平方数となるような$
$9以下の正の整数x,yの組を全て求めよ$
この動画を見る 

福田のおもしろ数学400〜2項展開の係数と次数に関する個数

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\left(\sqrt x+\dfrac{1}{2\sqrt[4]{x}}\right)^n$の展開式を降順に並べたとき、

最初の3項の$x$の係数が等差数列になった。

この展開式の中に$x$の次数が整数となる

項は何個あるか?
この動画を見る 

福田のおもしろ数学399〜20002000以下で0と2以外の数字を使わない正の整数の個数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$20002000$以下で$0$と$2$以外の数字を

含まない正の整数は何個あるか?
この動画を見る 

shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

単元: #数Ⅰ#数A#図形の性質#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\angle{B}=45^{ \circ }$
$\angle{C}=15^{ \circ }$
$AC=2\sqrt{3}+2 \triangle{ABC}の面積を求めなさい$
この動画を見る 

福田のおもしろ数学398〜ガウス記号が付いた1次方程式の解を分類する

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$[x]=ax+1$

を解いて下さい。

*$a$は整数とし、
$[x]$は$x$を超えない最大の整数を表す。
この動画を見る 

【数A】【場合の数と確率】確率の基本6 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある製品が大量にあり、工場Aで製造したものと工場Bで製造したものが3:7の割合で混ざっている。この中から無造作に3個の製品を取り出すとき、次の確率を求めよ。
(1) Aの製品が2個の確率
(2)  Aの製品が1個または3個の確率
右図のような碁盤の目の道路がある。甲乙2人が、それぞれA地点、B地点を同時に出発し、甲はBに、乙はAに向かって同じ速さで進むものとする。ただし、2人とも最短距離を選ぶものとし、2通りの選び方のある交差点では、どちらかを選ぶかは 1/2 の書くいr津であるものとする。
(1) 甲がC地点を通る確率
(2) 甲乙がCD間ですれちがう確率
この動画を見る 

【数A】【場合の数と確率】確率の基本5 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
5本のあたりくじの入っている20本のくじから、1本引いてもとに戻すことを5回繰り返すとき、少なくとも2回は当たりくじを引く確率を求めよ。
A,Bの2人がそれぞれ1個のさいころを4回ずつ投げる。2人とも3または6の目が3回以上出る確率を求めよ。
数直線上を動く点Pが原点の位置にある。1個のさいころを投げて1,2,3,4の目が出たらpは正の向きに2だけ進み、5,6が出たらpは負の向きに1だけ進む。さいころを4回続けて投げたとき、点pの座標pが次のようになる確率を求めよ。
1個のさいころを投げて、1または2の目が出たら50円もらえ、その他の目が出れば20円支払うゲームがある。さいころを6回投げて、もらう金額が160円になる確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の基本4 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Aの袋には白玉5個、黒玉4個、Bの袋には白玉3個、黒玉5個が入っている。A,Bの袋から1個ずつ玉を取り出すとき、次の確率を求めよ。
(1) Aからは白玉が、Bからは黒玉が出る確率
(2) 2個の玉の色が異なる確率

3人が3回じゃんけんをするとき、すべてあいこになる確率を求めよ。

A,B,Cの3人がある検定試験に合格する確率がそれぞれ 3\4,1/2,5/8 であるとする。3人のうち、少なくとも1人が合格する確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の基本2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉3個、赤玉5個、青玉5個が入った袋から、4個の玉を同時に取り出すとき、次の確率を求めよ。
(1)3個以上赤玉が出る確率
(2)取り出した玉がどの色の玉も含む確率
(3)取り出した玉の色が2色以上である確率

3個のさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)少なくとも2個の目は等しい
(2)3個の目の積が偶数

101から500までの番号札が各数1枚ずつある。この札から1枚取り出すとき、その番号が6でも9でも割り切れない確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

【入試数学との接し方…!】整数:城北高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$xを超えない最大の整数を[x]と表す$
$[\sqrt{m+10}]×[\sqrt{n}]=6となるような自然数の組はいくつあるか$
この動画を見る 

【数A】【整数の性質】n進法 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数を[ ]内の表し方で表せ。
(1)1100101(2) [3進法]
(2)12121(3) [2進法]
(3)1234(5) [2進法]

nは2以上の自然数とする。10進法の数72をn進法で表すと132(n)となる。nを求めよ。

次の個数を10進法の数で答えよ。
(1)2進法で表したとき,6桁(この6は10進法の数)となるような数
(2)5進法で表したとき,4桁(この4は10進法の数)となるような数
この動画を見る 

【数A】【整数の性質】合同式 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)$37^{100}$を6で割った余り
(2$)5^{80}$を8で割った余り
(3)$3^{100}$を13で割った余り
(4)$4^{200}$を9で割った余り

nを整数とする。合同式を用いて、次のものを求めよ。
(1)nを8で割った余りが3であるとき、n²+2n+5を8で割った余り
(2)nを17で割った余りが15であるとき、3n²+5n+9を17で割った余り
(3)nを35で割った余りが2であるとき、n⁴+3n³+4を35で割った余り
(4)nを41で割った余りが38であるとき、n³+7n²+8を41で割った余り

合同式を用いて、次のものを求めよ。
(1)$123^{122}$の一の位
(2)$7^{251}$の下2桁
この動画を見る 

【数A】【整数の性質】座標の考え方 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向きとする座標平面を考える。また,1mを1の長さとする。
地点A,Bの座標をそれぞれ(-4,1),(3,-5)とする。
(1)地点Aから東に5m進み,南に7m進んだ位置にある点の座標を答えよ。
(2)地点Bから西に4m進み,北に1m進んだ位置にある点の座標を答えよ。

平らな広場の地点Oを原点として,東の方向をx軸の正の向き,北の方向をy軸の正の向き,真上の方向をz軸の正の向きとする座標空間を考える。また,1mを1の長さとする。この広場の上空に気球Pが浮かんでいる。レーザー距離計で,次のように測定した。ただし,気球Pは1つの点とみなす。
[1]地点Oから東へ15m,北へ1m進んだ地点A(15,1,0)から,Pまでの距離を測ると41m
[2]地点Oから北へ21m進んだ地点B(0,21,0)から,Pまでの距離を測ると56m
[3]地点Oから南へ11m進んだ地点C(0,-11,0)から,Pまでの距離を測ると56m
このとき,気球Pの位置を求めよ。

座標空間において,A(3,2,0),B(3,4,-2),C(1,2,-2)を頂点とする三角形は,正三角形であることを示せ。
この動画を見る 

【数A】【整数の性質】進数応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3桁の自然数Nを7進法で表すと3桁の数a0b(7)となり,5進法で表すと逆の並びの3桁の数b0a(5)となるという。a,bを求めよ。また,Nを10進法で表せ。

自然数Nを5進法と7進法で表すと,それぞれ3桁の数abc(5),cab(7)になるという。a,b,cを求めよ。また,Nを10進法で表せ。

5種類の数字0,1,2,3,4を用いて表される自然数を,次のように小さい方から順に並べる。
1,2,3,4,10,11,12,13,14,20,21,22,……
(1) 2020番目の数をいえ。
(2) 2020は何番目の数か。
この動画を見る 

【数A】【整数の性質】ユークリッドの互除法の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)3で割ると1余り,7で割ると3余るような自然数のうち,3桁で最大のものと最小のものを求めよ。
(2)8で割ると4余り,13で割ると9余るような自然数のうち,4桁で最大のものと最小のものを求めよ。

次の等式を満たす自然数x,yの組をすべて求めよ。
(1)7x+2y=41
(2)3x+4y=36
(3)4x+5y=100

所持金660円で1個50円の商品Aと1個80円の商品Bを買う。所持金をちょうど使い切るとき,商品Aと商品Bをそれぞれ何個買えばよいか。ただし,消費税は考えないものとする。
この動画を見る 

【数A】【整数の性質】ユークリッドの互除法最大公約数を考える問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす自然数nをすべて求めよ。
(1)14n+52と4n+17の最大公約数が5になるような50以下のn
(2)11n+39と6n+20の最大公約数が7になるような100以下のn

nは自然数とする。n²+7n+36とn+5の最大公約数として考えられる数をすべて求めよ。
この動画を見る 

【数A】【整数の性質】ユークリッドの互除法図形を用いる問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
縦の長さが864,横の長さが1357である長方形において,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。この作業を,最初の長方形がすべて正方形で切り取られるまで繰り返す。
(1)最初に切り取られる正方形の1辺の長さを求めよ。また,残った部分の短辺の長さを求めよ。
(2)切り取られた正方形のうち,最も小さい正方形の面積を求めよ。
(3)切り取られた正方形は何種類か。
(4)切り取られた正方形の個数を求めよ。

縦の長さが1,横の長さが$\sqrt{3}$である長方形ABCDにおいて,長方形をできるだけ大きい正方形で切り取れるだけ切り取る。残った部分の長方形も同様に,その長方形をできるだけ大きい正方形で切り取れるだけ切り取る。右の図はこの作業を何回か繰り返したときの図である。この図の中にある長方形で,長方形ABCDと相似である長方形を見つけ,それを用いて$\sqrt{3}$が無理数であることを証明せよ。
この動画を見る 

【数A】【整数の性質】素因数分解、素数について ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。2310/nが素数となるnは何個あるか。

nは自然数とする。n²-14n+40が素数となるようなnをすべて求めよ。

次の問いに答えよ。
(1)(ア)5以上の素数を小さい方から順に10個あげよ。
(イ)(ア)であげた素数から予想できることについて,下の文章の□に当てはまる自然数のうち,最大のものを求めよ。ただし,□には同じ自然数が入るものとする。
5以上の素数は,□の倍数から1引いた数か,□の倍数に1足した数である。
(2)(1)(イ)の予想が正しいことを証明せよ。
この動画を見る 

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
この動画を見る 

【数A】【整数の性質】最小公倍数、最大公約数の基本2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
みかんが435個,りんごが268個ある。何人かの子どもに,みかんもりんごも平等に,できるだけ多く配ったところ,みかんは45個,りんごは34個余った。子どもの人数を求めよ。

(1)nは自然数で,n/20,n/42がともに自然数となるという。このようなnのうちで最も小さいものを求めよ。

(2)42/5, 21/10, 35/16,のいずれに掛けても積が自然数となる分数のうち,最も小さいものを求めよ。
この動画を見る 

【数A】【整数の性質】最小公倍数、最大公約数の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720

3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。

aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
この動画を見る 

福田のおもしろ数学386〜ルートの付いた不定方程式の解

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 福田次郎
問題文全文(内容文):
a,b,cは0以上の整数
\begin{equation}
\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{2026}
\end{equation}
を満たす(a,b,c)の組をすべて求めよ。
この動画を見る 

福田のおもしろ数学385〜1^2025+2^2025+…+2024^2025を45で割った余り

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1^{2025}+2^{2025}+…+2024^{2025}$
を$45$で割った余り
を求めてください。
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第3問〜有限小数の性質と論証

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1) a, b, nは自然数の定数で、bは4の倍数ではなく、n$ \geq$2 とする。aが$2^n$の倍数であるが、$ 2^{n +1}$の倍数ではないとき、a(a+b), 2a(2a + b) のいずれかは、$2 ^{n + 1}$ の倍数であるが、$2^{n + 2}$の倍数ではないことを示せ。
(2) bは自然数の定数で、4の倍数ではないとする。3以上の任意の自然数nに対して、次を満たす自然数 $a_n$ が存在することを示せ。$$ \frac{a_n(a_n + b)}{2^{2^n}}$$は、小数第n位の数字が5である小数第n位までの有限小数で表される。
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{1}$ 次の$\square$にあてはまる適切な数値を解答欄に記入せよ。
袋$A$には赤玉$3$個、白玉$1$個、袋$B$には赤玉$1$個、白玉$3$個が入っている。
「袋$A$から$2$個の玉を取り出して袋$B$に入れ、次に袋$B$から$2$個の玉を取り出して袋$A$に入れる」という操作を繰り返す。$1$回の操作の後、袋$A$に白玉が$2$個以上ある確率は$\fbox{ア}$、$2$回の操作の後、袋$A$の中が白玉だけになる確率は$\fbox{イ}$である。
この動画を見る 
PAGE TOP