数A - 質問解決D.B.(データベース) - Page 5

数A

2024年共通テスト解答速報〜数学ⅠA第4問整数の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。

2024共通テスト過去問
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第3問〜福田の入試問題解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2024共通テスト数学ⅠA第3問解説です

箱の中にカ ー ドが 2 枚以上入っており、それぞれのカ ードにはアルファベットが一文字だけ書かれている。この箱の中からカ ー ドを一枚取り出し、書かれているアルファベットを確認してからもとに戻すという試行をり返し行う。
(1)箱の中にA,Bのカードが 1 枚ずつ全部で 2 枚入っている場合を考える。以下では、2 以上の自然数nに対しn回の試行で A. Bがそろっているとは、n回の試行でA,Bのそれぞれが少なくとも1回は取り出されることを意味する。
(i)2回の試行でA,Bがそろっている確率は$\dfrac{ア}{イ}$である。
(ii)3回の試行でA,Bがそろっている確率を求める。
 例えば、3回の試行のうちAを1回、Bを2回取り出す取り出し方は3通りあり、それらを全て挙げると次のようになる。※表は動画内参照
このように考えることにより、3 回の試行で A. B がそろっている取り出し方はウ通りあることがわかる。よって、3 回の試行で A. B がそろっている確率は$\dfrac{ウ}{2^3}$である。
(iii) 4 回の試行で A. B がそろっている取り出し方はエオ通りある。 よって、4 回の試行でA,B がそろっている確率は$\dfrac{カ}{キ}$である。
(2)箱の中にA,B,Cのカ ー ドが一枚ずつ全で 3 枚入っている場合を考える。
以下では、3 以上の自然数nに対しn回目の試行で初めて A. B. C がそろうとn回の試行で A,B,Cのそれぞれが少なくとも1回は取り出されかつA,B.Cのうちいずれか1枚がn回目の試行で初めて取り出されることを意味する。
(i)3 回目の試行で初めて A. B, C がそろう取り出し方はク通りある。よって、3 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ク}{3^3}$である。
(ii) 4 回目の試行で初めて A.B,C がそろう確率を求める。4 回目の試行で初めて A. B. C がそろう取り出し方は.(1)の(ii)を振り返ることにより、3×ウ通りあることがわかる。よって、4 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ケ}{コ}$である。
(iii)5 回目の試行で初めて A. B. C がそろう取り出し方はサシ通りある。よってを 5 回目の試行で初めてA,B,Cがそろう確率は$\dfrac{サシ}{3^3}$である。
太郎さんと花子さんは. 6 回目の試行で初めて A. B, C, D がそろう確率について考えている。
太郎:例えば. 5 回目までにA,B,Cのそれぞれが少なくとも1回は取り出され.かっ 6 回目に初めてDが取り出される場合を考えたら計算できそうだね。
花子:それなら初めて A. B. C だけがそろうのが, 3 回目のとき. 4 回目のとき. 5 回目のときで分けて考えてみてはどうかな。
6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろう取り出し方がク通りであることに注意すると「 6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろい、かつ6 回目の試行で初めてDが取り出される取り出し方はスセ通りあることがわかる。同じように考えると6回の試行のうち 4 回目の試行で初めて A, B, C だけがそろい、かっ 6 回目の試行で初めてDが取り出される」取り出し方はソタ通りあることもわかる。以上のように考えることにより, 6 回目の試行で初めて A. B. C, D がそろう確率は$\dfrac{チツ}{テトナ}$であることがわかる。

2024共通テスト過去問
この動画を見る 

福田のおもしろ数学019〜ジュニア数学オリンピック本選問題〜直角三角形の斜辺の長さを求める

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
直角三角形の一辺の長さが 18 で、すべての辺の長さが整数のとき、斜辺の長さは?

ジュニア数学オリンピック過去問
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
 以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。

2024共通テスト過去問
この動画を見る 

正五角形と正三角形 京都府

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照

2023京都府
この動画を見る 

福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?

ジュニア数学オリンピック過去問
この動画を見る 

気付けば一瞬!!確率 2024早稲田佐賀

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,Dと書かれた4つのボールを無作為に横1列に並べるとき、AのボールがBのボールより右に来る確率を求めよ

2024早稲田佐賀高等学校
この動画を見る 

福田のおもしろ数学013〜ジュニア数学オリンピックから〜条件を満たす6個の変数は

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c,d,e,f$は相異なる1以上9以下の整数
$ab=cd=e+f$のとき、
$a+b+c+d+e+f$
として考えられる値をすべて求めよ.

ジュニア数学オリンピック過去問
この動画を見る 

福田のおもしろ数学012〜10秒チャレンジ〜重心によって分割される3つの三角形の面積が等しい証明

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三角形において、その重心 G で分割された 3 つの三角形の面積は等しいことを証明せよ.
※図は動画内参照
この動画を見る 

1729見て理系は嬉しいの?

アイキャッチ画像
単元: #数A#整数の性質
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
車のナンバープレートが1729やったら理系は喜ぶのか?に関して解説していきます。
この動画を見る 

福田のおもしろ数学011〜あけましておめでとうございます〜2024の階乗は末尾に0が何個並ぶか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2024 !の末尾に並ぶ 0 の個数を求めよ。
この動画を見る 

福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る 

福田のおもしろ数学009〜あなたはネコを見つけられるか〜箱から箱へ移動するネコを見つける方法

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#その他#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
あなたはネコを見つけられるか?
猫は毎晩となりの箱に移動する。
開けられる箱は毎朝ひとつだけ。
この動画を見る 

福田のおもしろ数学008〜正しいフォームを身につけよう〜外接する2円と共通接線に接する正方形

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の緑の円の半径と正方形の一片の長さを求めよ
※図は動画内参照
この動画を見る 

正方形の面積2024

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x×y=?
*図は動画内参照
この動画を見る 

気付けば一瞬!!角の和

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle a +\angle b +\angle c = ?$
*図は動画内参照
この動画を見る 

誰もがハマる!? 方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x+\frac{x}{x}+\frac{x}{x+\frac{x}{x}}=1$
この動画を見る 

【共通テスト】数学IA 第5問図形の性質を解説してみました(2023年本試)【この動画だけ絶望的にわかりにくい】

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
動画内手順1の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上にあることが分かる。
よって、$\angle CHG =$[エ]である。
一方、点Eは円Oの周上にあることから、[エ]=[オ]がわかる。
よって、$\angle CHG =$[オ]であるので、4点C,G,H,[カ]は同一円周上にある。
この円が点[ウ]を通ることにより、$\angle OEH =$[アイ]$^{ \circ }$を示すことができる。


[ウ]の解答群
⓪B
①D
②F
③O


[エ]の解答群
⓪$\angle AEC$
①$\angle CDF$
②$\angle CGH$
③$\angle CBO$
④$\angle FOG$


[オ]の解答群
⓪$\angle AED$
①$\angle ADE$
②$\angle BOE$
③$\angle DEG$
④$\angle EOH$


[カ]の解答群
⓪A
①D
②E
③F

-----------------
動画内手順2のとき、$\angle PTS =$[キ]である。
円Oの半径が$\sqrt{ 5 }$で、$OT=3 \sqrt{ 6 }$であったとすると、3点O,P,Rを通る円の半径は$\displaystyle \frac{[ク]\sqrt{ [ケ] }}{[コ]}$であり、RT=[サ]である。


[キ]の解答群
⓪$\angle PQS$
①$\angle PST$
②$\angle QPS$
③$\angle QRS$
④$\angle SRT$
この動画を見る 

「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です

天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
この動画を見る 

整数問題 大阪府

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・2020-nの値は93の倍数
・n-780の値は素数
自然数n=?

2020大阪府
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 

一橋大 確率のふりをした整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
赤玉x個、白玉x個の中から2個取り出す。
同じ色の玉が出る確率と異なる色の玉が出る確率が等しい(x,y)の組をすべて求めよ。

一橋大学過去問
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

【共通テスト】数学IA 第4問整数がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第4問整数が簡単になる本質テクニック、解説動画です

$37x+26y=3$の整数解($x,y$)をすべて求めよ
この動画を見る 

重心ではありませんよ。

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Hは△ABCの
①外心
②内心
③重心

*図は動画内参照
この動画を見る 

福田の数学〜ポリアの壺は証明を覚えよう〜杏林大学2023年医学部第1問前編〜ポリアの壺

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

整数問題 戸山高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは素数
$\frac{100}{n+3}$が整数となるnの値をすべて求めよ。

戸山高等学校
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは素数

(p-1)!+1はpで割り切れることを示せ
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る 

【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です

球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
この動画を見る 
PAGE TOP