解と判別式・解と係数の関係
大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
この動画を見る
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
【高校数学】2次方程式②~判別式とは~数学界のDの意思を継ぐもの 2-8【数学Ⅰ】
慶應義塾 三次方程式 解と係数の関係 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
この動画を見る
慶応義塾大学過去問題
$x^3-2x^2+3x-4=0$の3つの解をα,β,γとしたとき、次の式の値
(1)$α^4+β^4+γ^4$
(2)$α^5+β^5+γ^5$
福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。
${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
福田の一夜漬け数学〜図形と方程式〜円の方程式(4)切り取られる弦の長さと中点(基本)、高校2年生
単元:
#数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
この動画を見る
${\Large\boxed{1}}$ 円$x^2+y^2+4x-2y-1=0$ $\cdots$①と直線$4x+3y-5=0$ $\cdots$②
の交点を$A,B$とする。線分$AB$の長さと、中点の座標を求めよ。
慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。
[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}
・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る
慶応義塾大学過去問題
[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。
[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}
・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
香川大 3次方程式実数解 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#数学(高校生)#香川大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
香川大学過去問題
$f(x)=x^3-3a^2x+a^2-a$について
(1)$f(x)=0$が相異3実根をもつようなaの範囲
(2)(1)のとき3つの解は-2aと2aの間にあることを示せ
この動画を見る
香川大学過去問題
$f(x)=x^3-3a^2x+a^2-a$について
(1)$f(x)=0$が相異3実根をもつようなaの範囲
(2)(1)のとき3つの解は-2aと2aの間にあることを示せ
福田の一夜漬け数学〜2次関数・解の存在範囲(1)〜高校1年生
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2-2mx-m+2=0$ が次のような解をもつとき、定数$m$の
値の範囲を求めよ。
(1)異なる2つの正の解
(2)異なる2つの負の解
(3)異符号の解
(4)2つの0以上の解
(5)2つの0以下の解
この動画を見る
${\Large\boxed{1}} x^2-2mx-m+2=0$ が次のような解をもつとき、定数$m$の
値の範囲を求めよ。
(1)異なる2つの正の解
(2)異なる2つの負の解
(3)異符号の解
(4)2つの0以上の解
(5)2つの0以下の解
【高校数学】 数Ⅱ-41 解と係数の関係⑧
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x+4k+5$が1次式の2乗となるように、定数の値を定めよう。
②$x^2+xy-6y^2-x+7y+k$がx,yの1次式の積に分解できるように、定数kの値を定めよう。
この動画を見る
①$x^2-2x+4k+5$が1次式の2乗となるように、定数の値を定めよう。
②$x^2+xy-6y^2-x+7y+k$がx,yの1次式の積に分解できるように、定数kの値を定めよう。
【高校数学】 数Ⅱ-40 解と係数の関係⑦
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$x^2-(m-1)x+m+6=0$がともに2以上である2つの解をもつとき、 定数mの値の範囲を求めよう。
②2次方程式$x^2-2mx+m+2=0$の解の1つがより大きく、他の解がより小さい とき、定数mの値の範囲を求めよう。
この動画を見る
①2次方程式$x^2-(m-1)x+m+6=0$がともに2以上である2つの解をもつとき、 定数mの値の範囲を求めよう。
②2次方程式$x^2-2mx+m+2=0$の解の1つがより大きく、他の解がより小さい とき、定数mの値の範囲を求めよう。
【高校数学】 数Ⅱー39 解と係数の関係⑥
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2-mx+2m+5=0$が次のような異なる2つの解をもつように、定数mの値の範囲を定めよう。
①2つとも正
②2つとも負
③異符号
この動画を見る
◎2次方程式$x^2-mx+2m+5=0$が次のような異なる2つの解をもつように、定数mの値の範囲を定めよう。
①2つとも正
②2つとも負
③異符号
【高校数学】 数Ⅱ-38 解と係数の関係⑤
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2+3x-2=0$の2つの解がα、βのとき、次の2数を解とする2次方程式を1つ作ろう。ただす、計数は整数とする。
①$α^2、β^2$
②$α+2、β+2$
③$\displaystyle \frac{ β}{α},\displaystyle \frac{α }{β}$
この動画を見る
◎2次方程式$x^2+3x-2=0$の2つの解がα、βのとき、次の2数を解とする2次方程式を1つ作ろう。ただす、計数は整数とする。
①$α^2、β^2$
②$α+2、β+2$
③$\displaystyle \frac{ β}{α},\displaystyle \frac{α }{β}$
【高校数学】 数Ⅱ-37 解と係数の関係④
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。
①$6.-3$
②$2+3i,2-3i$
◎和と積が次のようになる2数を求めよう。
③和が-5,積が3
④和が2,積が4
この動画を見る
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。
①$6.-3$
②$2+3i,2-3i$
◎和と積が次のようになる2数を求めよう。
③和が-5,積が3
④和が2,積が4
【高校数学】 数Ⅱ-36 解と係数の関係③
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を、複素数の範囲で因数分解をしよう。
①$x^2+8x+5$
②$3x^2-4x-1$
③$2x^2+3x+4$
この動画を見る
◎次の2次式を、複素数の範囲で因数分解をしよう。
①$x^2+8x+5$
②$3x^2-4x-1$
③$2x^2+3x+4$
【高校数学】 数Ⅱ-35 解と係数の関係②
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$x^2+3x+1=0$の2つの解をα、βとするとき、次の式の値を求めよう。
①$α^2β+αβ^2$
②$α^2+β^2$
③$α^3+β^3$
④$\displaystyle \frac{ β}{α}+\displaystyle \frac{α }{β}$
この動画を見る
◎2次方程式$x^2+3x+1=0$の2つの解をα、βとするとき、次の式の値を求めよう。
①$α^2β+αβ^2$
②$α^2+β^2$
③$α^3+β^3$
④$\displaystyle \frac{ β}{α}+\displaystyle \frac{α }{β}$
【高校数学】 数Ⅱ-34 解と係数の関係①
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)
◎次の2次方程式の2つの解の和と積を求めよう。
①$x^2+3x-5=0$
②$-5x^2+x-2=0$
③$3x^2-9=0$
④$2x(3-x)=0$
⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
この動画を見る
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)
◎次の2次方程式の2つの解の和と積を求めよう。
①$x^2+3x-5=0$
②$-5x^2+x-2=0$
③$3x^2-9=0$
④$2x(3-x)=0$
⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
【高校数学】 数Ⅱ-33 2次方程式の解と判別式⑥
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$4x^2+(k-1)x+1=0$が重解をもつとき、定数kの値とその解を求めよう。
②2次方程式$x^2+3kx-1=2kx-5$が虚数解をもつとき、定数kの値の範囲を求めよう。
この動画を見る
①2次方程式$4x^2+(k-1)x+1=0$が重解をもつとき、定数kの値とその解を求めよう。
②2次方程式$x^2+3kx-1=2kx-5$が虚数解をもつとき、定数kの値の範囲を求めよう。
【高校数学】 数Ⅱ-32 2次方程式の解と判別式⑤
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
この動画を見る
◎aのを定数とするとき、方程式$ax^2+6x+a-8=0$の解の種類を判別しよう。
【高校数学】 数Ⅱ-31 2次方程式の解と判別式④
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。
①$x^2(a-8)x+a=0$
②$x^2+2(a+1)x+2a^2+5=0$
この動画を見る
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。
①$x^2(a-8)x+a=0$
②$x^2+2(a+1)x+2a^2+5=0$
【高校数学】 数Ⅱ-30 2次方程式の解と判別式③
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式の解の種類を判別しよう。
①$x^2-3x-1=0$
②$x^2+5x+7=0$
③$x^2+6x+9=0$
④$x^2+6x+2a+1=0$(aは定数とする)
この動画を見る
◎次の2次方程式の解の種類を判別しよう。
①$x^2-3x-1=0$
②$x^2+5x+7=0$
③$x^2+6x+9=0$
④$x^2+6x+2a+1=0$(aは定数とする)
【高校数学】 数Ⅱ-29 2次方程式の解と判別式②
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。
①$-2x^2-7=-6x$
②$(x+1)(x+3)=x(9-2x)$
◎次の2次方程式の実数解を求めよう。
③$2x^2-3x-3=0$
④$3x^2-8x+7=0$
⑤$4x^2+12x=9=0$
この動画を見る
◎次の2次方程式を解こう。
①$-2x^2-7=-6x$
②$(x+1)(x+3)=x(9-2x)$
◎次の2次方程式の実数解を求めよう。
③$2x^2-3x-3=0$
④$3x^2-8x+7=0$
⑤$4x^2+12x=9=0$
【高校数学】 数Ⅱ-28 2次方程式の解と判別式①
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次方程式を解こう。
①$x^2=9$
②$(x+1)^2=3$
③$x^2-7$
④$(x-2)^2=-6$
⑤$x^2+x+1=0$
⑥$x^2-4x+8=0$
この動画を見る
◎次の2次方程式を解こう。
①$x^2=9$
②$(x+1)^2=3$
③$x^2-7$
④$(x-2)^2=-6$
⑤$x^2+x+1=0$
⑥$x^2-4x+8=0$