複素数と方程式
素数を探せ!10101‥101
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数を全て求めよ.
$101,10101,1010101,101010・・・・・・101$
この動画を見る
素数を全て求めよ.
$101,10101,1010101,101010・・・・・・101$
【数Ⅱ】剰余の定理と因数定理の使い方【3次方程式を解く・組立除法でちゃちゃっと計算】
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
剰余の定理と因数定理の使い方に関して解説していきます.
この動画を見る
剰余の定理と因数定理の使い方に関して解説していきます.
解けるように作られた9次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$x=2+3(2+3x^3)^3$
この動画を見る
実数解を求めよ.
$x=2+3(2+3x^3)^3$
ただの4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(3x-2)^4+(3x-4)^4=16$
この動画を見る
これを解け.
$(3x-2)^4+(3x-4)^4=16$
福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(7) 三角方程式\\
0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\piにおいて\\
\cos y=\sin2x のグラフを描け。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(7) 三角方程式\\
0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\piにおいて\\
\cos y=\sin2x のグラフを描け。
\end{eqnarray}
福田のわかった数学〜高校2年生067〜三角関数(6)三角方程式
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(6) 三角方程式\\
次の三角方程式の一般解と0 \leqq \theta \lt 2\piにおける解を求めよ。\\
\cos4\theta=\sin(\theta+\frac{\pi}{4})
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(6) 三角方程式\\
次の三角方程式の一般解と0 \leqq \theta \lt 2\piにおける解を求めよ。\\
\cos4\theta=\sin(\theta+\frac{\pi}{4})
\end{eqnarray}
福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
福田のわかった数学〜高校2年生064〜三角関数(3)三角方程式の基礎
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(3) 三角方程式の基礎\hspace{40pt}\\
(1)\sin\theta=-\frac{1}{2} (2)\cos\theta=\frac{\sqrt3}{2} (3)\tan\theta=-1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(3) 三角方程式の基礎\hspace{40pt}\\
(1)\sin\theta=-\frac{1}{2} (2)\cos\theta=\frac{\sqrt3}{2} (3)\tan\theta=-1\\
の解を(ア)0 \leqq \theta \lt 2\pi (イ)-\pi \leqq \theta \lt \pi\\
(ウ)一般解 としてそれぞれ求めよ。
\end{eqnarray}
【数Ⅱ】複素数と方程式:x²+x+1=0の2解をα、βとする。(1)α+β(2)α³+β³(3)α¹⁰⁰+β¹⁰⁰の値を求めよ。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^2+x+1=0$の2解を$\alpha,\beta$とする。
(1)$\alpha+\beta$
(2)$\alpha^3+\beta^3$
(3)$\alpha^{100}+\beta^{100}$の値を求めよ。
この動画を見る
$x^2+x+1=0$の2解を$\alpha,\beta$とする。
(1)$\alpha+\beta$
(2)$\alpha^3+\beta^3$
(3)$\alpha^{100}+\beta^{100}$の値を求めよ。
福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件
単元:
#数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1 \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.
または
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1 \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.
または
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}
2021明治大学理工学部過去問
【数Ⅱ】複素数と方程式:解と係数の関係(3次)の利用
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3次方程式$x^3+ax^2+bx+20=0$の解の1つが$x=3-i$であるとき、実数の定数a,bの値と、他の解を求めよう。
この動画を見る
3次方程式$x^3+ax^2+bx+20=0$の解の1つが$x=3-i$であるとき、実数の定数a,bの値と、他の解を求めよう。
解けるように作られた五次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^5+(x+3)^5=328(x+1)$
この動画を見る
これを解け.
$(x-1)^5+(x+3)^5=328(x+1)$
4次方程式 展開する?しない?
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(1+x^2)^2=4x(1-x^2)$
この動画を見る
これを解け.
$(1+x^2)^2=4x(1-x^2)$
横浜市立(医)3次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.
1973年横浜市立(医)過去問
この動画を見る
$x^3-x^2-x+k=0(k\gt 1)$
①実数は1つであることを示せ.
②3根の絶対値はすべて1より大きいことを示せ.
1973年横浜市立(医)過去問
ただの4次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x^2+3x+2)(x^2+9x+18)=168x^2$
この動画を見る
これを解け.
$(x^2+3x+2)(x^2+9x+18)=168x^2$
【数Ⅱ】複素数と方程式:解の公式は係数が実数のときのみ使用可能
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよう。
$(2+i)x^2-(1+6i)x-2(3-4i)=0$
この動画を見る
次の等式を満たす実数xの値を求めよう。
$(2+i)x^2-(1+6i)x-2(3-4i)=0$
成蹊大2021 3次方程式の解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
この動画を見る
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
千葉大(医)2018
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{9}\pi +i\sin\dfrac{2}{9}$
①$\alpha=z+z^8$
$\alpha$を解にもつ整数係数の3次方程式を求めよ.
②①の方程式の他の2つの解を$\alpha$の2次方程式で求めよ.
2018千葉大(医)過去問
この動画を見る
$Z=\cos \dfrac{2}{9}\pi +i\sin\dfrac{2}{9}$
①$\alpha=z+z^8$
$\alpha$を解にもつ整数係数の3次方程式を求めよ.
②①の方程式の他の2つの解を$\alpha$の2次方程式で求めよ.
2018千葉大(医)過去問
方程式が解をもたないとき
単元:
#数学(中学生)#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xの方程式ax+3=2x-aが解をもたないときa=?
仙台育英学園高等学校
この動画を見る
xの方程式ax+3=2x-aが解をもたないときa=?
仙台育英学園高等学校
素数問題
福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}
2021上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}
2021上智大学文系過去問
2021一橋大 素数の個数
3次方程式 解と係数の関係
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
この動画を見る
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
昭和(医) 華麗な解法
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ3次方程式を求めよ.
3次の係数は1である.
昭和大(医)過去問
この動画を見る
$x^3-3x^2+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2,\beta^2,\delta^2$を解にもつ3次方程式を求めよ.
3次の係数は1である.
昭和大(医)過去問
【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
3乗根の方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
この動画を見る
実数解を求めよ.
$\sqrt[3]{(8-x)^2}-\sqrt[3]{(8-x)(27+x)}+$
$\sqrt[3]{(27+x)^2}=7$
福田の数学〜中央大学2021年経済学部第1問(1)〜2次方程式の解
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$
2021中央大経済学部過去問
この動画を見る
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$
2021中央大経済学部過去問
福田の数学〜中央大学2021年理工学部第3問〜剰余類による分類
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り
(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.
(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.
2021中央大理工学部過去問
この動画を見る
$\boxed{3}$自然数$a$を3で割った余りを$r(r=0,1,2)$とする.以下の問いに答えよ.
(1)以下を求めよ.
(ア)$r=0$のとき,$a^3+4$を3で割った余り
(イ)$r=1$のとき,$a^3+4$を3で割った余り
(ウ)$r=2$のとき,$a^3+4$を3で割った余り
(2)3つの自然数$a,a^3+4,a^5+8$のうちいずれか1つは3の倍数であることを示せ.
(3)3つの自然数$a,a^3+4,a^5+8$が同時に素数となる$a$をすべて求めよ.
2021中央大理工学部過去問
福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。