三角関数とグラフ
【分ければカンタン!】三角関数のグラフの移動と拡大を5分で解説!〔数学、高校数学〕
【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】
単元:
#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?
(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け
(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け
(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け
(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?
(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?
(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け
(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け
(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け
(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?
(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
放物線と比 大阪桐蔭
単元:
#数学(中学生)#数Ⅰ#数Ⅱ#2次関数#三角関数#三角関数とグラフ#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
Rの座標は?
*図は動画内参照
大阪桐蔭高等学校
この動画を見る
Rの座標は?
*図は動画内参照
大阪桐蔭高等学校
福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解
単元:
#大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。
2022慶應義塾大学商学部過去問
この動画を見る
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。
2022慶應義塾大学商学部過去問
【数Ⅱ】三角関数と方程式 5 三角関数と対称式【t=sinx+cosxで置換しよう】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
【数Ⅱ】三角関数と方程式 4 sinとcosの2次方程式【倍角の公式を使って次数下げ】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
【数Ⅱ】三角関数と方程式 3 三角関数の2次方程式【文字の置き換えをしたら範囲をチェック!】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。
自治医科大過去問
この動画を見る
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。
自治医科大過去問
京大の標準的な問題!三角関数の知識だけで解けます【数学 入試問題】【京都大学】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(\theta)=cos4\theta-4sin^2\theta$とする。$0≦\theta≦\dfrac{3\pi}{4}$における$f(\theta)$の最大値および最小値を求めよ。
京都大過去問
この動画を見る
$ f(\theta)=cos4\theta-4sin^2\theta$とする。$0≦\theta≦\dfrac{3\pi}{4}$における$f(\theta)$の最大値および最小値を求めよ。
京都大過去問
【超難問】x-1=0が難しすぎる世界
三角関数の重要ポイントが詰まった問題【数学 入試問題】【奈良県立医大】
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$0<\theta<\pi,\theta \neq \dfrac{\pi}{2}$のとき、
$ tan\theta-\dfrac{1}{tan\theta}=\dfrac{1}{sin\theta}-\dfrac{1}{cos\theta}$を満たす$\theta$の値を求めよ。
奈良県立医大過去問
この動画を見る
$0<\theta<\pi,\theta \neq \dfrac{\pi}{2}$のとき、
$ tan\theta-\dfrac{1}{tan\theta}=\dfrac{1}{sin\theta}-\dfrac{1}{cos\theta}$を満たす$\theta$の値を求めよ。
奈良県立医大過去問
【数Ⅱ】三角比と三角関数の違い【弧度法・グラフ・加法定理の3つだけ。加法定理は証明もしよう】
福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
xy平面の第1象限内において、直線$l:y=mx (m \gt 0)$とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線$y=tx (t \gt 0)$を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、$b \gt a$とする。
(1)mを用いてtを表せ。
(2)tを用いて$\frac{b}{a}$を表せ。
(3)極限値$\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)$を求めよ。
2022東北大学理系過去問
この動画を見る
xy平面の第1象限内において、直線$l:y=mx (m \gt 0)$とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線$y=tx (t \gt 0)$を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、$b \gt a$とする。
(1)mを用いてtを表せ。
(2)tを用いて$\frac{b}{a}$を表せ。
(3)極限値$\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)$を求めよ。
2022東北大学理系過去問
動体視力と数学を鍛えるダルマさん~全国入試問題解法 #Shorts
単元:
#数学(中学生)#三角関数#三角関数とグラフ#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角関数の証明に関して解説していきます.
この動画を見る
三角関数の証明に関して解説していきます.
大阪大2022
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
この動画を見る
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.
2022阪大過去問
埼玉県 令和4年度 数学 関数 2022 入試問題100題解説75問目!
千葉県(改) 令和4年度 数学 関数 2022 入試問題100題解説73問目!!
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照
2022千葉県
この動画を見る
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照
2022千葉県
三角関数の方程式
単元:
#数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \cos^2x+\cos^22x+\cos^23x=1$
この動画を見る
これを解け.
$ \cos^2x+\cos^22x+\cos^23x=1$
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。
(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。
$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$
と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$
を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。
$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。
$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1 ①1 ②-p ③p \\
④1-p ⑤1+p ⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p^2) \\
$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$ ①$\alpha$ ②$\frac{\pi}{2}$
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。
(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。
$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$
と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$
を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。
$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。
$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1 ①1 ②-p ③p \\
④1-p ⑤1+p ⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p^2) \\
$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$ ①$\alpha$ ②$\frac{\pi}{2}$
2021共通テスト数学過去問
【数学Ⅰ/テスト対策】三角方程式
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の式を満たす$\theta$の値を求めよ。
(1)
$2\sin\theta=\sqrt{ 2 }$
(2)
$2\cos\theta=-1$
(3)
$\sqrt{ 3 }\tan\theta=1$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の式を満たす$\theta$の値を求めよ。
(1)
$2\sin\theta=\sqrt{ 2 }$
(2)
$2\cos\theta=-1$
(3)
$\sqrt{ 3 }\tan\theta=1$
【数学Ⅱ/三角関数】 三角関数の合成
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$
(2)$\sin\theta-\cos\theta$
この動画を見る
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$
(2)$\sin\theta-\cos\theta$
【数学Ⅰ/三角比】三角比の最大・最小(二次関数)
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
三角関数基本
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
この動画を見る
値を求めよ.
$\cos \dfrac{\pi}{7}・\cos \dfrac{2\pi}{7}・\cos\dfrac{3\pi}{7}$
福田のわかった数学〜高校2年生071〜三角関数(10)三角方程式の解の個数
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(10) 解の個数
$3\cos^2x-\sin x-a=0$
の$0 \leqq x \leqq \frac{3\pi}{2}$の範囲にある解の個数を、実数$a$の値によって分類せよ。
この動画を見る
数学$\textrm{II}$ 三角関数(10) 解の個数
$3\cos^2x-\sin x-a=0$
の$0 \leqq x \leqq \frac{3\pi}{2}$の範囲にある解の個数を、実数$a$の値によって分類せよ。
福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解
単元:
#数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
福田のわかった数学〜高校2年生069〜三角関数(8)三角不等式
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(8) 三角不等式
aは2以上の整数、$0 \lt x \leqq \pi$のとき次の連立不等式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\cos x \leqq \cos2ax \ldots① \\
\sin2ax \leqq 0 \ldots②
\end{array}
\right.
\end{eqnarray}$
この動画を見る
数学$\textrm{II}$ 三角関数(8) 三角不等式
aは2以上の整数、$0 \lt x \leqq \pi$のとき次の連立不等式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\cos x \leqq \cos2ax \ldots① \\
\sin2ax \leqq 0 \ldots②
\end{array}
\right.
\end{eqnarray}$
福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
この動画を見る
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
福田のわかった数学〜高校2年生067〜三角関数(6)三角方程式
単元:
#数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(6) 三角方程式
次の三角方程式の一般解と$0 \leqq \theta \lt 2\pi$における解を求めよ。
$\cos4\theta=\sin(\theta+\frac{\pi}{4})$
この動画を見る
数学$\textrm{II}$ 三角関数(6) 三角方程式
次の三角方程式の一般解と$0 \leqq \theta \lt 2\pi$における解を求めよ。
$\cos4\theta=\sin(\theta+\frac{\pi}{4})$
福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式
単元:
#数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
この動画を見る
数学$\textrm{II}$ 三角関数(5) 三角方程式
定角$\alpha$に対して次の一般解を求めよ。
(1)$\sin x=\sin\alpha$ (2)$\cos x=\cos\alpha$
(3)$\tan x=\tan\alpha$
福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問