三角関数とグラフ
【数学Ⅱ】三角関数の式の証明
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】三角関数の式の証明解説動画です
-----------------
$\displaystyle \frac{cos^2 \theta - \sin^2 \theta}{1+2 \sin \theta \cos \theta}=\displaystyle \frac{1- \tan \theta}{1+ \tan \theta}$
この動画を見る
【数学Ⅱ】三角関数の式の証明解説動画です
-----------------
$\displaystyle \frac{cos^2 \theta - \sin^2 \theta}{1+2 \sin \theta \cos \theta}=\displaystyle \frac{1- \tan \theta}{1+ \tan \theta}$
19奈良県教員採用試験(数学:2番 三角関数)
単元:
#数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
京都大学 5倍角の公式
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.
1996京都大過去問
この動画を見る
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式$f(n)$を求めよ.
(2)$\cos\dfrac{\pi}{10}\cos\dfrac{3\pi}{10}\cos\dfrac{7\pi}{10}\cos\dfrac{9\pi}{10}=\dfrac{5}{16}$を示せ.
1996京都大過去問
【コツ】三角関数のグラフの書き方
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$
(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$
(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
この動画を見る
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$
(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$
(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
埼玉大 3次関数の極値の差 ヨビノリ技
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2-x$の極大値と極小値は差が$4$で和が正である.
$a$の値を求めよ.
2018埼玉大過去問
この動画を見る
$f(x)=x^3+ax^2-x$の極大値と極小値は差が$4$で和が正である.
$a$の値を求めよ.
2018埼玉大過去問
中央大2020微分 3次関数と直線の交点
単元:
#数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2-2$と$y=k(x-1)-2$が相異なる3点で交わる$k$の範囲を求めよ.
2020中央大(経)過去問
この動画を見る
$f(x)=x^3+3x^2-2$と$y=k(x-1)-2$が相異なる3点で交わる$k$の範囲を求めよ.
2020中央大(経)過去問
早稲田大2019微分・3次関数と直線の交点
単元:
#数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^2$上の$(a,a^2)$における接線が$y=x^3-ax$と3点で交わる$a$の範囲を求めよ.
2019早稲田大過去問
この動画を見る
$y=x^2$上の$(a,a^2)$における接線が$y=x^3-ax$と3点で交わる$a$の範囲を求めよ.
2019早稲田大過去問
早稲田(商)三角関数・微分
単元:
#数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sin\theta+\cos\theta)^6-6\sin\theta\cos\theta$の最大値・最小値を求めよ.
1996早稲田(商)過去問
この動画を見る
$(\sin\theta+\cos\theta)^6-6\sin\theta\cos\theta$の最大値・最小値を求めよ.
1996早稲田(商)過去問
3次関数 三角形の面積最大 お茶の水女子大
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
この動画を見る
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
三次関数の最大値 微分の基礎 大阪教育大
単元:
#数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1\leqq x\leqq 1$における最大値を求めよ.
2008大阪教育大過去問
この動画を見る
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1\leqq x\leqq 1$における最大値を求めよ.
2008大阪教育大過去問
【高校数学】三角関数のグラフの裏技~これを覚えればグラフは余裕~【数学Ⅱ】
京都大 三角関数 4倍角の公式 最大値・最小値
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(\theta)=\cos4\theta-4\sin^2\theta$
$0 \leqq \theta \leqq \displaystyle \frac{3}{4}\pi$における$f(\theta)$の最大値・最小値を求めよ
出典:2004年京都大学 過去問
この動画を見る
$f(\theta)=\cos4\theta-4\sin^2\theta$
$0 \leqq \theta \leqq \displaystyle \frac{3}{4}\pi$における$f(\theta)$の最大値・最小値を求めよ
出典:2004年京都大学 過去問
青山学院大 三角方程式の解の個数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sin^2\theta-k\sin\theta+\displaystyle \frac{1}{4}=0$
$(0 \leqq \theta \lt \pi)$
解の個数を求めよ
出典:2009年青山学院大学 過去問
この動画を見る
$\sin^2\theta-k\sin\theta+\displaystyle \frac{1}{4}=0$
$(0 \leqq \theta \lt \pi)$
解の個数を求めよ
出典:2009年青山学院大学 過去問
東北大 三角方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \lt 2\pi$方程式を解け
(1)
$\sin^3x+\cos^3x=1$
(2)
$\sin^3x+\cos^3x+\sin x=2$
出典:2007年東北大学 過去問
この動画を見る
$0 \leqq x \lt 2\pi$方程式を解け
(1)
$\sin^3x+\cos^3x=1$
(2)
$\sin^3x+\cos^3x+\sin x=2$
出典:2007年東北大学 過去問
京都大 三角関数 3次関数 解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$\cos 3\theta - \cos 2\theta+3\cos\theta-1=a$を満たす$\theta$の個数
出典:京都大学 過去問
この動画を見る
$0 \leqq \theta \lt 2\pi$
$\cos 3\theta - \cos 2\theta+3\cos\theta-1=a$を満たす$\theta$の個数
出典:京都大学 過去問
信州大(医)三角関数 最大値・最小値 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sin^4x+2\sin x \cos x+\cos ^4x$の最小値と最大値を求めよ
出典:1986年信州大学医学部 過去問
この動画を見る
$\sin^4x+2\sin x \cos x+\cos ^4x$の最小値と最大値を求めよ
出典:1986年信州大学医学部 過去問
長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
この動画を見る
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
信州大 三角関数・微分 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?
出典:2004年国立大学法人信州大学 過去問
この動画を見る
$f(x)=2\cos \displaystyle \frac{x}{2}+8 \cos \displaystyle \frac{x}{3}$のとりうる範囲は?
出典:2004年国立大学法人信州大学 過去問
東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
この動画を見る
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲
出典:2002年東京大学 過去問
【高校数学】三角関数⑧~グラフで解く最大値・最小値~ 4-10【数学Ⅱ】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦$\displaystyle \frac{7π}{4}$)
(2) y=2cos(θ+$\displaystyle \frac{π}{3}$)(0≦θ≦π)
この動画を見る
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦$\displaystyle \frac{7π}{4}$)
(2) y=2cos(θ+$\displaystyle \frac{π}{3}$)(0≦θ≦π)
【高校数学】三角関数⑥~三角方程式の応用~ 4-8【数学Ⅱ】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数⑥
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$
(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
この動画を見る
三角関数⑥
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) sin(θ-$\displaystyle \frac{π}{6}$)=-$\displaystyle \frac{1}{2}$
(2) cos(θ+$\displaystyle \frac{π}{4}$)=$\displaystyle \frac{√3}{2}$
【高校数学】三角関数⑤~三角方程式の基礎~ 4-7【数学Ⅱ】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
この動画を見る
0≦θ<2πのとき、次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
次の方程式を満たすθを求めよ。
(1) 2√3sinθ=-3
(2) 3tanθ+√3=0
【高校数学】三角関数4.5~例題で学ぶグラフのかき方~ 4-6【数学Ⅱ】
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次のグラフをかけ。(丸付けは動画を参照してください)
(1) y=$\displaystyle \frac{1}{2}$cosθ
(2) y=cos(θ-$\displaystyle \frac{π}{6}$)
(3) y=cos4θ
(4) y=sin$\displaystyle \frac{θ}{2}$
(5) y=tan$\displaystyle \frac{θ}{4}$
この動画を見る
次のグラフをかけ。(丸付けは動画を参照してください)
(1) y=$\displaystyle \frac{1}{2}$cosθ
(2) y=cos(θ-$\displaystyle \frac{π}{6}$)
(3) y=cos4θ
(4) y=sin$\displaystyle \frac{θ}{2}$
(5) y=tan$\displaystyle \frac{θ}{4}$
【高校数学】三角関数④~グラフの描き方~*裏技あり 4-5【数学Ⅱ】
京都府立医・長崎大 三角関数 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#京都府立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け
長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
この動画を見る
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け
長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
札幌医大 三角方程式 高校数学 Mathematics Japanese university entrance exam
単元:
#三角関数とグラフ#加法定理とその応用
指導講師:
鈴木貫太郎
問題文全文(内容文):
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
この動画を見る
札幌医科大学過去問題
xに関する方程式
$cos2x+acosx+b=0$
この方程式$0 \leqq x < 2\pi$の範囲で2個の異なる実数解を持つためのa,bに関する条件
島根大(医】三角関数 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
この動画を見る
島根大学過去問題
$y=4sin2x(sinx+cosx)+\sqrt2sin(x+45^\circ)$
$0^\circ \leqq x <180^\circ$
(1)この関数の最大値とそのときのxの値
(2)この関数の最小値を求めよ。またそのときのxの値をθとするとき、$cos(θ+45^\circ)$の値を求めよ。
弘前大 三角関数 正十角形の面積 高校数学 大学入試 Japanese university entrance exam questions
単元:
#数Ⅱ#複素数と方程式#複素数平面#三角関数#複素数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
この動画を見る
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
この動画を見る
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。