三角関数
三角関数
【高校数学】 数Ⅱ-110 点の回転

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
この動画を見る
①点P(3.4)を、原点○を中心として$\displaystyle \frac{2}{3}π$だけ回転させた点Qの座標を求めよう。
【高校数学】 数Ⅱ-109 2直線のなす角

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____
◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。
②$y=-3x+5.y=2x$
③$y=\sqrt{ 3 }x,y=x-5$
④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
この動画を見る
交わる2直線$y=m,x+n,、y=m_2x+n_2$が垂直でないとき、そのなす鋭角を$\theta$とすると$\tan \theta=$①____
◎次の2直線のなす角$\theta$を求めよう。ただし、$0\lt \theta \lt \displaystyle \frac{π}{2}$とする。
②$y=-3x+5.y=2x$
③$y=\sqrt{ 3 }x,y=x-5$
④$\sqrt{ 3 }x-2y=4,3\sqrt{ 3 }x+y-2=0$
【高校数学】 数Ⅱ-108 加法定理②

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\tan(\alpha+\beta)=$____
②$\tan(\alpha-\beta)=$____
◎次の値を求めよう。
③$\tan 105°$
④$\tan 75°$
この動画を見る
①$\tan(\alpha+\beta)=$____
②$\tan(\alpha-\beta)=$____
◎次の値を求めよう。
③$\tan 105°$
④$\tan 75°$
【高校数学】 数Ⅱ-107 加法定理①

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\sin(\alpha+\beta)=$____
②$\cos(\alpha+\beta)=$____
③$\sin(\alpha-\beta)=$____
④$\cos(\alpha-\beta)=$____
◎次の値を求めよう。
⑤$\cos 75°$
⑥$\sin 105°$
⑦$\sin 15°$
この動画を見る
①$\sin(\alpha+\beta)=$____
②$\cos(\alpha+\beta)=$____
③$\sin(\alpha-\beta)=$____
④$\cos(\alpha-\beta)=$____
◎次の値を求めよう。
⑤$\cos 75°$
⑥$\sin 105°$
⑦$\sin 15°$
【高校数学】 数Ⅱ-106 三角関数を含む関数の最大・最小②

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。
①$y=\sin^2 \theta +\cos \theta+1 (0\leqq \theta\lt2π)$
②$y=\cos^2 \theta +\sin \theta-1 (-\displaystyle \frac{π}{2}\leqq \theta\leqq\displaystyle \frac{π}{2})$
この動画を見る
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。
①$y=\sin^2 \theta +\cos \theta+1 (0\leqq \theta\lt2π)$
②$y=\cos^2 \theta +\sin \theta-1 (-\displaystyle \frac{π}{2}\leqq \theta\leqq\displaystyle \frac{π}{2})$
【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。
①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$
②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$
③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$
④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。
①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$
②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$
③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$
④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
【高校数学】 数Ⅱ-104 三角関数を含む方程式・不等式⑥

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$2\sin^2 \theta-\sin \theta -1 \gt 0$
②$2\sin^2 \theta-3\sin \theta +1 \lt 0$
③$2\sin^2 \theta+5\cos \theta \lt 4$
この動画を見る
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$2\sin^2 \theta-\sin \theta -1 \gt 0$
②$2\sin^2 \theta-3\sin \theta +1 \lt 0$
③$2\sin^2 \theta+5\cos \theta \lt 4$
【高校数学】 数Ⅱ-103 三角関数を含む方程式・不等式⑤

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$2\cos^2 \theta-5\cos \theta -3=0$
②$2\cos^2 \theta-\sin \theta -1=0$
③$\sqrt{ 3 } \tan^2 \theta -2\tan \theta-\sqrt{ 3 }=0$
この動画を見る
◎$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$2\cos^2 \theta-5\cos \theta -3=0$
②$2\cos^2 \theta-\sin \theta -1=0$
③$\sqrt{ 3 } \tan^2 \theta -2\tan \theta-\sqrt{ 3 }=0$
【高校数学】 数Ⅱ-102 三角関数を含む方程式・不等式④

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
この動画を見る
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$
②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$
③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
【高校数学】 数Ⅱ-101 三角関数を含む方程式・不等式③

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
この動画を見る
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
【高校数学】 数Ⅱ-100 三角関数を含む方程式・不等式②

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$2\sin \theta \leqq -\sqrt{ 3 }$
②$2\cos\theta-\sqrt{ 2 } \gt 0$
③$\tan \theta +\sqrt{ 3 } \lt 0$
この動画を見る
$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。
①$2\sin \theta \leqq -\sqrt{ 3 }$
②$2\cos\theta-\sqrt{ 2 } \gt 0$
③$\tan \theta +\sqrt{ 3 } \lt 0$
【高校数学】 数Ⅱ-99 三角関数を含む方程式・不等式①

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
この動画を見る
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。
①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$
②$2\cos\theta+1=0$
③$\sqrt{ 3 } \tan \theta=1$
【高校数学】 数Ⅱ-98 三角関数のグラフ④

単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=2\sin 3\theta$
②$y=\sin (\theta+\displaystyle \frac{π}{3})$
③$y=\cos(\displaystyle \frac{\theta}{2}-\displaystyle \frac{π}{4})$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=2\sin 3\theta$
②$y=\sin (\theta+\displaystyle \frac{π}{3})$
③$y=\cos(\displaystyle \frac{\theta}{2}-\displaystyle \frac{π}{4})$
【高校数学】 数Ⅱ-97 三角関数のグラフ③

単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=\sin \theta$
②$y=\cos \displaystyle \frac{\theta}{3}$
③$y=\tan3\theta$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=\sin \theta$
②$y=\cos \displaystyle \frac{\theta}{3}$
③$y=\tan3\theta$
【高校数学】 数Ⅱ-96 三角関数のグラフ②

単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=2\sin \theta$
②$y=\cos\theta+1$
③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=2\sin \theta$
②$y=\cos\theta+1$
③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
【高校数学】 数Ⅱ-95 三角関数のグラフ①

単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。
①$y=\sin\theta$
②$y=\cos\theta$
③$y=\tan\theta$
この動画を見る
◎次の関数のグラフと周期を書こう。
①$y=\sin\theta$
②$y=\cos\theta$
③$y=\tan\theta$
【高校数学】 数Ⅱ-94 三角関数の性質⑤

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の式を簡単にしよう。
①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$
②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$
③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
この動画を見る
◎次の式を簡単にしよう。
①$\sin (\displaystyle \frac{π}{2}+\theta)+\sin (\displaystyle \frac{π}{2}-\theta)+\cos (-\theta)$
②$\cos (\displaystyle \frac{π}{2}+\theta)+\cos (\displaystyle \frac{π}{2}-\theta)+cos (-\theta)+\cos (π-\theta)$
③$\sin (\displaystyle \frac{π}{2}+\theta)\sin (\displaystyle \frac{π}{2}-\theta)-\sin (π+\theta)\sin (π-\theta)$
【高校数学】 数Ⅱ-93 三角関数の性質④

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$
②$\cos \displaystyle \frac{11}{6}π$
③$\tan \displaystyle \frac{7}{6}π$
[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____
$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____
$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____
$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____
$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____
$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____
$\sin (π-\theta)=$⑩____
$\cos (π-\theta)=$⑪____
$\tan (π-\theta)=$⑫____
この動画を見る
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$
②$\cos \displaystyle \frac{11}{6}π$
③$\tan \displaystyle \frac{7}{6}π$
[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____
$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____
$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____
$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____
$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____
$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____
$\sin (π-\theta)=$⑩____
$\cos (π-\theta)=$⑪____
$\tan (π-\theta)=$⑫____
【高校数学】 数Ⅱ-92 三角関数の性質③

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
この動画を見る
◎次の値を求めよう。
①$\sin \displaystyle \frac{7}{3}π$
②$\cos \displaystyle \frac{11}{4}π$
③$\tan \displaystyle \frac{19}{4}π$
④$\sin (-\displaystyle \frac{π}{6})$
⑤$\cos -\displaystyle \frac{π}{3}$
⑥$\tan (-\displaystyle \frac{π}{6})$
【高校数学】 数Ⅱ-91 三角関数の性質②

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta \cos \theta=\displaystyle \frac{1}{2}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$のとき、次の式の値を求めよう。
①$\sin \theta +\cos \theta$
②$sin^3 \theta+\cos^3 \theta$
この動画を見る
◎$\sin \theta \cos \theta=\displaystyle \frac{1}{2}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$のとき、次の式の値を求めよう。
①$\sin \theta +\cos \theta$
②$sin^3 \theta+\cos^3 \theta$
【高校数学】 数Ⅱ-90 三角関数の性質①

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。
①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$
②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
この動画を見る
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。
①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$
②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
【高校数学】 数Ⅱ-89 一般角の三角関数

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
また、単位円について同様に考えると、
$\sin \theta=$④____
$\cos \theta=$⑤____
ちなみに、三角関数の値の範囲は、
⑥____$\leqq \sin \theta \leqq$____
⑦____$\leqq \cos \theta \leqq$____
$\tan \theta=$恥数全体。
※図は動画内参照
この動画を見る
座標平面上で、x軸の正の部分を始線にとり、 一般角$\theta$の動径と、原点を中心とする半径$r$の円との交点Pの座標を(x,y)とすると、
$\sin \theta=$①____
$\cos \theta=$②____
$\tan \theta=$③____
また、単位円について同様に考えると、
$\sin \theta=$④____
$\cos \theta=$⑤____
ちなみに、三角関数の値の範囲は、
⑥____$\leqq \sin \theta \leqq$____
⑦____$\leqq \cos \theta \leqq$____
$\tan \theta=$恥数全体。
※図は動画内参照
【高校数学】 数Ⅱ-88 扇形の弧の長さと面積

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____
◎次の扇形の弧の長さと面積を求めよう。
③半径が4、中心角が$\displaystyle \frac{π}{5}$
④半径が3、中心角が150°
この動画を見る
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____
◎次の扇形の弧の長さと面積を求めよう。
③半径が4、中心角が$\displaystyle \frac{π}{5}$
④半径が3、中心角が150°
【高校数学】 数Ⅱ-87 一般角と弧度法

単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の角の憧憬を図示しよう。
①70°
②-150°
③400°
④-635°
◎次の角を、度数は弧度に、弧度は度数に直そう。
⑤30°
⑥135°
⑦210°
⑧$\displaystyle \frac{π}{3}$
⑨$\displaystyle \frac{2}{15}π$
⑩$π$
この動画を見る
◎次の角の憧憬を図示しよう。
①70°
②-150°
③400°
④-635°
◎次の角を、度数は弧度に、弧度は度数に直そう。
⑤30°
⑥135°
⑦210°
⑧$\displaystyle \frac{π}{3}$
⑨$\displaystyle \frac{2}{15}π$
⑩$π$
