三角関数 - 質問解決D.B.(データベース) - Page 5

三角関数

【有名問題】京都大学の伝説の問題です【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan1°$は有理数か?

数学入試問題過去問
この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 

格子点を通るということは?【山口大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。

山口大過去問
この動画を見る 

円周率の証明問題【2010年大分大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。

$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$

2010大分大過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}\ 0 \leqq \theta \lt 2\pi$とする。
座標平面上の3点O(0,0), $P(\cos\theta,\sin\theta)$, $Q(1,3\sin2\theta)$
が三角形をなすとき、$\triangle OPQ$の面積の最大値を求めよ。

2022一橋大学文系過去問
この動画を見る 

大学入試問題#160 名古屋市立大学(2020) 三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \leqq \pi$
$\cos4\theta=\cos2\theta$をみたす$\theta$をすべて求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面の第1象限内において、直線$l:y=mx (m \gt 0)$とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線$y=tx (t \gt 0)$を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、$b \gt a$とする。
(1)mを用いてtを表せ。
(2)tを用いて$\frac{b}{a}$を表せ。
(3)極限値$\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)$を求めよ。

2022東北大学理系過去問
この動画を見る 

大学入試問題#137 秋田大学(2020) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$y=\displaystyle \frac{6+4\sin\theta+4\cos\theta+\sin2\theta}{2+\sin\theta+\cos\theta}$の最小値を求めよ。

出典:2020年秋田大学 入試問題
この動画を見る 

#51 数検1級1次 過去問 逆三角関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#三角関数とグラフ#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$\sin(\sin^{-1}(-\displaystyle \frac{5}{13})+\cos^{-1}(\displaystyle \frac{4}{5}))$の値を求めよ。

出典:数検1級1次 過去問
この動画を見る 

動体視力と数学を鍛えるダルマさん~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#三角関数#三角関数とグラフ#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角関数の証明に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(6)$0 \leqq x \leqq \pi, 0 \leqq y \leqq \pi$を満たすx,yに対して、等式$2\sin x+\sin y=1$が
成り立つとする。
$(\textrm{i})$この等式を満たすxの範囲は$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})x,y$が$2\cos x+\cos y=2\sqrt2$を満たすとき、$\sin(x+y)$の値を求めると
$\boxed{\ \ サ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

【誘導あり:概要欄】大学入試問題#131 浜松医科大学(2020) 三角比

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$x \gt 0$のとき
$x \gt \sin\ x$を示せ

(2)
$\displaystyle \frac{1}{6} \lt \sin10^{ \circ } \lt \displaystyle \frac{\pi}{18}$を示せ

出典:2020年浜松医科大学 入試問題
この動画を見る 

大阪大2022

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\dfrac{2}{7}\pi$とする.
(1)$ \cos 4\alpha-\cos 3\alpha$を示せ.
(2)$ f(x)=8x^3+4x^2-4x-1,f(\cos \alpha)=0$を示せ.
(3)$ \cos\dfrac{2}{7}\pi$は無理数であることを示せ.

2022阪大過去問
この動画を見る 

埼玉県 令和4年度 数学 関数 2022 入試問題100題解説75問目!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=?
*図は動画内参照

2022埼玉県
この動画を見る 

千葉県(改) 令和4年度 数学 関数 2022 入試問題100題解説73問目!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照

2022千葉県
この動画を見る 

和積を暗記するのはナンセンスじゃね?

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
和積を暗算ではなく理解する方法紹介動画です
この動画を見る 

三角関数の方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \cos^2x+\cos^22x+\cos^23x=1$
この動画を見る 

三角関数。指数方程式 簡単だよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{1}{4^{\sin^2x}}+\dfrac{1}{4^{\cos^2x}}=1$
この動画を見る 

加法定理語呂合わせ

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
高校数学加法定理語呂合わせ紹介
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

【数学Ⅱ/三角関数】三角方程式②

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。
(1)
$\tan(\theta -\displaystyle \frac{\pi}{4})=\displaystyle \frac{1}{\sqrt{ 3 }}$

(2)
$\tan(\theta -\displaystyle \frac{\pi}{6})=-1$
この動画を見る 

【数学Ⅱ/三角関数】三角方程式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$のとき、次の方程式を解け。

(1)
$\sin(\theta-\displaystyle \frac{\pi}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$


(2)
$\cos(\theta+\displaystyle \frac{\pi}{3})=\displaystyle \frac{1}{\sqrt{ 2 }}$
この動画を見る 

【数学Ⅰ/三角比】三角不等式(単位円)

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の不等式を満たす$\theta$の範囲を求めよ。
(1)
$\sin\theta \geqq \displaystyle \frac{\sqrt{ 3 }}{2}$

(2)
$2\cos\theta \gt -1$

(3)
$\sqrt{ 3 }\tan\theta \geqq -1$
この動画を見る 

【数学Ⅰ/テスト対策】三角方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の式を満たす$\theta$の値を求めよ。
(1)
$2\sin\theta=\sqrt{ 2 }$

(2)
$2\cos\theta=-1$

(3)
$\sqrt{ 3 }\tan\theta=1$
この動画を見る 

【数学Ⅱ/三角関数】 三角関数の合成

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を、$r\sin(\theta+\alpha)$の形で表せ。
ただし、$r \gt 0,$ $0 \leqq \alpha \leqq 2\pi$とする。
(1)$\sqrt{ 3 }\sin\theta+\cos\theta$

(2)$\sin\theta-\cos\theta$
この動画を見る 

【数学Ⅰ/三角比】三角比の最大・最小(二次関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、$y=3-2\sin^2\theta-\cos\theta$の最大値と最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(26) 2変数関数の最大最小
$\alpha,\beta$は0以上$2\pi$よりこの範囲を動く。
$\sqrt3\sin\beta-\cos\alpha\cos\beta$
の最大値最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(25) 重要な変形(3)
外接円の半径が1の$\triangle ABC$がある。
この三角形の内接円の半径は$\frac{1}{2}$以下であることを示せ。
この動画を見る 

福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(24) 重要な変形(2)
$\triangle ABC$において
$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$
を証明せよ。 
この動画を見る 
PAGE TOP