平均変化率・極限・導関数
平均変化率・極限・導関数
福田のわかった数学〜高校3年生理系106〜変化率(1)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
この動画を見る
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
気を付けないと間違える計算問題

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
この動画を見る
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
2021一橋大(経済)補足と別解

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
2021一橋(経済)後期

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
【基本から解説】数Ⅲ・微分 導関数の定義に従って微分する問題

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
この動画を見る
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
11三重県教員採用試験(数学:5-(2) 極限値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}(2)$
$\displaystyle \lim_{x\to\infty} (2-3x)\sin \left\{\log(2x+2)-\log(2x+1)\right\}$の
極限値を求めよ.
この動画を見る
$\boxed{5}(2)$
$\displaystyle \lim_{x\to\infty} (2-3x)\sin \left\{\log(2x+2)-\log(2x+1)\right\}$の
極限値を求めよ.
09高知県教員採用試験(数学:1-(4) 不定形の極限)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\displaystyle \lim_{x\to 3}\dfrac{ax+b}{\sqrt{x+1}-2}=4$のとき,
定数$a,b$の値を求めよ.
この動画を見る
$\boxed{1}-(4)$
$\displaystyle \lim_{x\to 3}\dfrac{ax+b}{\sqrt{x+1}-2}=4$のとき,
定数$a,b$の値を求めよ.
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
高専数学 微積II #20 極値の判定

10三重県教員採用試験(数学:6-(2) 極限,平均値の定理)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}-(2)$
$\displaystyle \lim_{x\to 0}\dfrac{\sin (sin x)-\sin x}{\sin x-x}$の
極限値を求めよ.
この動画を見る
$\boxed{6}-(2)$
$\displaystyle \lim_{x\to 0}\dfrac{\sin (sin x)-\sin x}{\sin x-x}$の
極限値を求めよ.
高専数学 微積II #7 極値の判定

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\sqrt{1+2x}-4\sqrt{4+x}$
の極限を求めよ.
この動画を見る
$f(x)=\sqrt{1+2x}-4\sqrt{4+x}$
の極限を求めよ.
10三重県教員採用試験(数学:6-(1) 極限値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}(1)$
$\displaystyle \lim_{x\to 0}\dfrac{1-e^{x^3}}{x^2 \log(1+3x)}$
の極限値を求めよ.
この動画を見る
$\boxed{6}(1)$
$\displaystyle \lim_{x\to 0}\dfrac{1-e^{x^3}}{x^2 \log(1+3x)}$
の極限値を求めよ.
06滋賀県教員採用試験(数学:1-(3) 関数のグラフ)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
この動画を見る
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
高専数学 微積II #7 極値の判定

単元:
#数Ⅱ#指数関数と対数関数#微分法と積分法#対数関数#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\sin x-\log(1+x)$は$x=0$で
極値をとるか調べよ.
この動画を見る
$f(x)=\sin x-\log(1+x)$は$x=0$で
極値をとるか調べよ.
12三重県教員採用試験(数学:7番 極限値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{x\to 2}\dfrac{1}{x\to 2} \displaystyle \int_{2}^{x} t^4e^t dt$
の極限値を求めよ.
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{x\to 2}\dfrac{1}{x\to 2} \displaystyle \int_{2}^{x} t^4e^t dt$
の極限値を求めよ.
言語学オタクに数学を教えるよ!その2 ネイピア数とは

練習問題36 (数検1級1次 教採 極限値)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \dfrac{e^x-e^{-x}}{\log (1+x)}$
を求めよ.
この動画を見る
$\displaystyle \lim_{x\to\infty} \dfrac{e^x-e^{-x}}{\log (1+x)}$
を求めよ.
12和歌山県教員採用試験(数学:1-(5) 相加・相乗平均)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
この動画を見る
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
ε N論法 #7 a_n ≧ b_n

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
数列{$a_n$},{$b_n$}は各$n$において
$a_n \geqq b_n$をみたす
$\displaystyle \lim_{n\to\infty} b_n=+\infty$
$\displaystyle \lim_{n\to\infty} a_n=+\infty$
$ε N$論法で証明せよ.
この動画を見る
数列{$a_n$},{$b_n$}は各$n$において
$a_n \geqq b_n$をみたす
$\displaystyle \lim_{n\to\infty} b_n=+\infty$
$\displaystyle \lim_{n\to\infty} a_n=+\infty$
$ε N$論法で証明せよ.
ε N論法 #6 1-n^2(n→∞)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
この動画を見る
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
ε N論法 #5 √n(n→∞)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
ε-N論法 #2 lim 1/n^2=0

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
ε-N論法 #3 lim n/n+2 =1

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
ε-N論法 #1 lim1/n=0

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
ε-N論法 #4 はさみうちの原理

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
この動画を見る
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
兵庫県教員採用試験(数学:12番 極限値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
この動画を見る
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
岡山県教員採用試験:数学 極限値

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \left(\sin\sqrt{x+a}-\sin\sqrt x\right)$
の値を求めよ.
この動画を見る
$\displaystyle \lim_{x\to\infty} \left(\sin\sqrt{x+a}-\sin\sqrt x\right)$
の値を求めよ.
15兵庫県教員採用試験(数学 極値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$k\gt 0$とする.
$f(x)=x^3-3k^2x$は極値をもち
極大値は16である$k$の値を求めよ.
この動画を見る
$k\gt 0$とする.
$f(x)=x^3-3k^2x$は極値をもち
極大値は16である$k$の値を求めよ.
極限 中国人民大学

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
この動画を見る
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
#19数検準1級 極限値(はさみうちの原理)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
