数Ⅱ
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2)
単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(9) 媒介変数表示(2)\\
tが実数値をとって変化するとき、\\
x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}\\
はどんな曲線を表すか。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(9) 媒介変数表示(2)\\
tが実数値をとって変化するとき、\\
x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}\\
はどんな曲線を表すか。
\end{eqnarray}
整式の剰余 すっきり解こう
【数Ⅱ】式と証明:二項定理の使い方編
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
①$(3x+1)^5$を展開したときの$x^4$の係数
②$(2-x)^{10}$を展開したときの$x^7$の係数 をそれぞれ求めよ。
この動画を見る
①$(3x+1)^5$を展開したときの$x^4$の係数
②$(2-x)^{10}$を展開したときの$x^7$の係数 をそれぞれ求めよ。
【数Ⅱ】式と証明:二項定理 覚え方編
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$(a+b)^n$を一般項をr番目として、二項定理を用いて展開しなさい。表記する際には、第1,2,3項と第r項,そして第n-2,n-1,n項を表すこと。なお、a,b,n,rの文字は用いて表してよい。
この動画を見る
$(a+b)^n$を一般項をr番目として、二項定理を用いて展開しなさい。表記する際には、第1,2,3項と第r項,そして第n-2,n-1,n項を表すこと。なお、a,b,n,rの文字は用いて表してよい。
福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)\thetaは実数で、-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}を満たす。方程式\\
4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1\\
を満たすとき、\sin\theta+\cos\thetaの値は\ \boxed{\ \ カ\ \ }\ であり、\\
\sin\thetaの値は\ \boxed{\ \ キ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校2年生041〜軌跡(8)媒介変数表示の軌跡(1)
単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(8) 媒介変数表示(1)\\
\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.
(0 \leqq \theta \leqq \pi)\\
を満たす(x,y)の軌跡を図示せよ。\\
また、0 \leqq \theta \leqq \frac{3}{2}\piのときはどうか。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(8) 媒介変数表示(1)\\
\left\{\begin{array}{1}
x=2\cos\theta+\sin\theta\\
y=\cos\theta-2\sin\theta
\end{array}\right.
(0 \leqq \theta \leqq \pi)\\
を満たす(x,y)の軌跡を図示せよ。\\
また、0 \leqq \theta \leqq \frac{3}{2}\piのときはどうか。
\end{eqnarray}
結局0の0乗っていくつになるの?
単元:
#算数(中学受験)#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
0の0乗は何になるか
この動画を見る
0の0乗は何になるか
福田の数学〜慶應義塾大学2021年薬学部第1問(3)〜アポロニウスの円と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)xy平面上において、点Pは2点A(0,0),\ B(7,0)に対してAP:BP=3:4\\
を満たす。\\
(\textrm{i})点Pの軌跡の方程式は\boxed{\ \ エ\ \ }である。\\
(\textrm{ii})点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、\\
不等式y \leqq \sqrt3|x+9|の表す領域の共通部分の面積は\boxed{\ \ オ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)xy平面上において、点Pは2点A(0,0),\ B(7,0)に対してAP:BP=3:4\\
を満たす。\\
(\textrm{i})点Pの軌跡の方程式は\boxed{\ \ エ\ \ }である。\\
(\textrm{ii})点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、\\
不等式y \leqq \sqrt3|x+9|の表す領域の共通部分の面積は\boxed{\ \ オ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
積分の基本
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
この動画を見る
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
航空大学校 対数の基本
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$5^{\log_{10}5x}=7^{\log_{10}7x}$
$35^{\log_{10}35}\times 35^{\log_{10}x}$の値を求めよ.
航空大学校過去問
この動画を見る
$5^{\log_{10}5x}=7^{\log_{10}7x}$
$35^{\log_{10}35}\times 35^{\log_{10}x}$の値を求めよ.
航空大学校過去問
福田のわかった数学〜高校2年生040〜軌跡(7)円周角
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(7) 円周角\hspace{160pt}\\
2点\ A(1,0),\ B(0,1)に対し\angle APB=45°を満たす点Pの軌跡を図示せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(7) 円周角\hspace{160pt}\\
2点\ A(1,0),\ B(0,1)に対し\angle APB=45°を満たす点Pの軌跡を図示せよ。
\end{eqnarray}
指数・対数・対称式
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$
$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$
$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
微分の基本 一歩先を行く数2
福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
福田のわかった数学〜高校2年生039〜軌跡(6)2直線の交点の軌跡
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(6) 2直線の交点の軌跡\\
2直線\\
x-my+1=0, mx+y=0\\
の交点の軌跡を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(6) 2直線の交点の軌跡\\
2直線\\
x-my+1=0, mx+y=0\\
の交点の軌跡を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生038〜軌跡(5)反転の話その3
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(5) 反転の話(3)まとめ\\
動点Pが原点Oを通る原点以外の円上を動く。半直線OP上でOP・OQ=a^2\\
(a \gt 0)を満たす点Qの軌跡は原点を通らない直線となることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(5) 反転の話(3)まとめ\\
動点Pが原点Oを通る原点以外の円上を動く。半直線OP上でOP・OQ=a^2\\
(a \gt 0)を満たす点Qの軌跡は原点を通らない直線となることを示せ。
\end{eqnarray}
【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
ゆる言語学者が無限に聞いていられる素数のお話
福田の数学〜慶應義塾大学2021年商学部第1問(1)〜対数の基本性質
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
名古屋大学2002どっちがでかいか?
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
①$\ell_n\left(1+\dfrac{1}{x}\right)$ vs $\dfrac{1}{x+1}$
②$\left(1+\dfrac{2002}{2001}\right)^{\frac{2001}{2002}}$ vs $\left(1+\dfrac{2001}{2002}\right)^{\frac{2002}{2001}}$
この動画を見る
どちらが大きいか?
①$\ell_n\left(1+\dfrac{1}{x}\right)$ vs $\dfrac{1}{x+1}$
②$\left(1+\dfrac{2002}{2001}\right)^{\frac{2001}{2002}}$ vs $\left(1+\dfrac{2001}{2002}\right)^{\frac{2002}{2001}}$
福田のわかった数学〜高校2年生037〜軌跡(4)反転の話その2
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(4) 反転の話(2)\\
動点Pが直線l:x+y=1 上を動く。\\
原点Oを端点とする半直線OP上で\\
OP・OQ=1\\
を満たす点Qの軌跡を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(4) 反転の話(2)\\
動点Pが直線l:x+y=1 上を動く。\\
原点Oを端点とする半直線OP上で\\
OP・OQ=1\\
を満たす点Qの軌跡を求めよ。
\end{eqnarray}