数Ⅱ
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
単元:
#数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
中学生の知識でオイラーの公式を理解しよう Vol 4 微分の定義
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 4 微分の定義を解説
この動画を見る
中学生の知識でオイラーの公式を理解しよう Vol 4 微分の定義を解説
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理
この動画を見る
Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理
【受験対策】 数学-関数⑧
単元:
#数Ⅱ#図形と方程式#点と直線
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。
①直線ℓの式は?
②直線mの式は?
③直線nとX軸との交点をEとするとき、△ADEの面積は?
④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
この動画を見る
右の図のように、3点、A(4.8), B(-4.0), C(2.0)があります。直線又は2点、A、Bを通る直線で、直線mは2点、A、Cを通る直線です。また、直線nは、関数$y=-\displaystyle \frac{1}{4}x+\displaystyle \frac{19}{4}$のグラフで、線分ACの中点、Dを通り、直線mと垂直に交わっています。
①直線ℓの式は?
②直線mの式は?
③直線nとX軸との交点をEとするとき、△ADEの面積は?
④3点A.B.Cを通る円の中心の座標を求めよう。
※図は動画内参照
【受験対策】 数学-関数⑥
単元:
#数Ⅰ#数Ⅱ#図形と方程式#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で、直線ℓは関数y=x+6のグラフです。
x軸上に点A(-1,0)、点B(4,0)をy軸上に点C(0,4)をそれぞれとります。
また、直線ℓ上の$x \gt 0,y \gt 0$の部分に点Pをとります。
①2点B,Cを通る直線の式は?
②x軸、y軸、直線ℓで囲まれた図形の面積は?
③△ABPの面積と△ACPの面積が等しくなる時の点Pの座標は?
※図は動画内参照
この動画を見る
右の図で、直線ℓは関数y=x+6のグラフです。
x軸上に点A(-1,0)、点B(4,0)をy軸上に点C(0,4)をそれぞれとります。
また、直線ℓ上の$x \gt 0,y \gt 0$の部分に点Pをとります。
①2点B,Cを通る直線の式は?
②x軸、y軸、直線ℓで囲まれた図形の面積は?
③△ABPの面積と△ACPの面積が等しくなる時の点Pの座標は?
※図は動画内参照
福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)\ f(x)の増減を調べ、極値を求めよ。
2022青山学院大学理工学部過去問
この動画を見る
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)\ f(x)の増減を調べ、極値を求めよ。
2022青山学院大学理工学部過去問