漸化式
福島県立医大 4項間漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2-27x-27=0$の3つの解を$\alpha,\beta,\gamma$
$A_n=\alpha^n+\beta^n+\gamma^n$
(1)
$A_{n+3}$を$A_{n+2},A_{n+1},A_n$で表せ
(2)
$A_n$は$3^n$の倍数であることを示せ
出典: 福島県立医科大学 過去問
この動画を見る
$x^3-3x^2-27x-27=0$の3つの解を$\alpha,\beta,\gamma$
$A_n=\alpha^n+\beta^n+\gamma^n$
(1)
$A_{n+3}$を$A_{n+2},A_{n+1},A_n$で表せ
(2)
$A_n$は$3^n$の倍数であることを示せ
出典: 福島県立医科大学 過去問
最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=\displaystyle \frac{n+3}{n+1}\left\{3a_n+3^{n+1}-(n+1)(n+2)\right\}$ $\cdots$①
(1)$a_2=\boxed{\ \ ア\ \ }$ である。
(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。
したがって
$b_{n+1}-b_n=\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。
$n$を2以上の自然数とするとき
$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$
$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$
が成り立つことを利用すると
$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$
が得られる。これは$n=1$のときも成り立つ。
(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$
で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。
(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。
2020センター試験過去問
この動画を見る
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=\displaystyle \frac{n+3}{n+1}\left\{3a_n+3^{n+1}-(n+1)(n+2)\right\}$ $\cdots$①
(1)$a_2=\boxed{\ \ ア\ \ }$ である。
(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。
したがって
$b_{n+1}-b_n=\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。
$n$を2以上の自然数とするとき
$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$
$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$
が成り立つことを利用すると
$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$
が得られる。これは$n=1$のときも成り立つ。
(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$
で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。
(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。
2020センター試験過去問
滋賀大 複素数 数列 漸化式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n,b_n$整数
$(3+2i)^n=a_n+b_ni$
$a_n,b_n$の一般項を求めよ
出典:滋賀大学 過去問
この動画を見る
$a_n,b_n$整数
$(3+2i)^n=a_n+b_ni$
$a_n,b_n$の一般項を求めよ
出典:滋賀大学 過去問
宇都宮大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
この動画を見る
$a_n \gt 0,a_1=3$
$S_{n+1}+S_n=\displaystyle \frac{1}{3}(S_{n+1}-S_n)^2$
$a_n,S_n$を求めよ
出典:2013年宇都宮大学 過去問
室蘭工業大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$ 一般項を求めよ
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$
出典:2018年蘭工業大学 過去問
この動画を見る
$a_1=\displaystyle \frac{1}{2}$ 一般項を求めよ
$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$
出典:2018年蘭工業大学 過去問
福井大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$
出典:福井大学 過去問
この動画を見る
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$
出典:福井大学 過去問
【数学B】漸化式6パターンを20分でまとめてみた!【まとめ動画】
横浜国大 複雑な漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$
出典:2000年横浜国立大学 過去問
この動画を見る
$a_0=1$一般項を求めよ$(n$自然数$)$
$a_n=\displaystyle \sum_{k=1}^n 3^ka_{n-k}$
出典:2000年横浜国立大学 過去問
【特性方程式】どういう意味?←解説します
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$a_{n}=1,a_{n+1}=2a_{n}-3$のように定義される数列の一般項$a_{n}$は?
この動画を見る
$a_{n}=1,a_{n+1}=2a_{n}-3$のように定義される数列の一般項$a_{n}$は?
福岡教育大 連立漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=a_n-8b_n$
$b_{n+1}=a_n+7b_n$
出典:1989年福岡教育大学 過去問
この動画を見る
$a_1=2,b_1=1$
$a_{n+1}=a_n-8b_n$
$b_{n+1}=a_n+7b_n$
出典:1989年福岡教育大学 過去問
芝浦工業大 漸化式 特性方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=9$
$S_{n+1}=4a_n-10$
一般項$a_n$を求めよ
出典:2005年芝浦工業大学 過去問
この動画を見る
$a_1=9$
$S_{n+1}=4a_n-10$
一般項$a_n$を求めよ
出典:2005年芝浦工業大学 過去問
慶應義塾大(経済)漸化式 特性方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}=2a_n^2$
(1)
一般項$a_n$1を求めよ
(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$
出典:2005年慶應義塾大学経済学部 過去問
この動画を見る
$a_1=1$
$a_{n+1}=2a_n^2$
(1)
一般項$a_n$1を求めよ
(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$
出典:2005年慶應義塾大学経済学部 過去問
漸化式 数列
単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
この動画を見る
$a_2=3$
$2S_n=(n+1)a_n-(n-1)$
{$a_n$}の一般項を求めよ
確率漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
千葉大 漸化式 良問再投稿
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
この動画を見る
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
帝京大(医)漸化式 合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
この動画を見る
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り
出典:2005年帝京大学医学部 過去問
高知大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$
$a_n$を求めよ
出典:1995年高知大学 過去問
この動画を見る
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$
$a_n$を求めよ
出典:1995年高知大学 過去問
一橋大 確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$
次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数
出典:2013年一橋大学 過去問
この動画を見る
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$
次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数
出典:2013年一橋大学 過去問
静岡大 漸化式 数列の最大値
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ
出典:2016年静岡大学 過去問
この動画を見る
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ
出典:2016年静岡大学 過去問
滋賀医科大 複雑な問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
この動画を見る
$n!=2^{an}m(n \geqq 2,m$奇数$)$
(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ
(2)
$a_{2n}-a_n$を$n$で表せ
(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ
(4)
$a_n \lt n$を表せ
(5)
$\sqrt[ n ]{ n! }$は無理数 示せ
出典:滋賀医科大学 過去問
鹿児島大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$
出典:2019年鹿児島大学 過去問
この動画を見る
$a_1=1$ 一般項を求めよ
$a_{n+1}=2a_n+3n^2+3n$
出典:2019年鹿児島大学 過去問
連立漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=b_1=1$
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=7a_n+6b_n+4 \\
b_{n+1}=-4a_n-3b_n-2
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$a_1=b_1=1$
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=7a_n+6b_n+4 \\
b_{n+1}=-4a_n-3b_n-2
\end{array}
\right.
\end{eqnarray}$
横浜市立(医)3項間漸化式 良問再投稿
単元:
#数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$
出典:2016年横浜市立大学 医学部 過去問
この動画を見る
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$
出典:2016年横浜市立大学 医学部 過去問
横浜市立大(医)三項間漸化式 特性方程式(数3不要)
単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
数列{$x_n$}
$x_{n+2}=-ax_{n+1}+2a^2x_n$
$x_1=1,x_2=b$ $a \neq 0$ $n$自然数
$\displaystyle \lim_{ n \to \infty }x_n=0$となる$a,b$の条件
出典:1989年横浜市立大学 医学部 過去問
この動画を見る
数列{$x_n$}
$x_{n+2}=-ax_{n+1}+2a^2x_n$
$x_1=1,x_2=b$ $a \neq 0$ $n$自然数
$\displaystyle \lim_{ n \to \infty }x_n=0$となる$a,b$の条件
出典:1989年横浜市立大学 医学部 過去問
大阪大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$
一般項を求めよ
出典:大阪大学 過去問
この動画を見る
$a_1=1$
$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$
一般項を求めよ
出典:大阪大学 過去問
一橋大 確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#一橋大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了
(1)
$n$回目に$A$が投げる確率$a_{n}$は?
(2)
ちょうど$n$回目で$A$が勝つ確率は?
(3)
$n$回以内に$A$が勝つ確率は?
出典:一橋大学 過去問
この動画を見る
$A,B$ 2人でサイコロを投げる。
1回目は$A$
$1,2,3\rightarrow$同じ人が投げる
$4,5\rightarrow$別の人が投げる
$6\rightarrow$勝ち、終了
(1)
$n$回目に$A$が投げる確率$a_{n}$は?
(2)
ちょうど$n$回目で$A$が勝つ確率は?
(3)
$n$回以内に$A$が勝つ確率は?
出典:一橋大学 過去問
信州大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$
$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$
(1)
一般項を求めよ
(2)
$\displaystyle \sum_{k=1}^n a_k$
出典:2010年信州大学 過去問
この動画を見る
$a_{1}=\displaystyle \frac{1}{12}$
$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$
(1)
一般項を求めよ
(2)
$\displaystyle \sum_{k=1}^n a_k$
出典:2010年信州大学 過去問
お茶の水女子大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^2-6x+2=0$の2つの解を$\alpha,\beta$
$A_{n}=(\alpha^{-n}+\beta^{-n})(\alpha+\beta)^n$
(1)
$A_{1},A_{2}$の値を求めよ
(2)
$A_{n}$はすべての自然数$n$について整数であることを示せ
出典:2009年お茶の水女子大学 過去問
この動画を見る
$3x^2-6x+2=0$の2つの解を$\alpha,\beta$
$A_{n}=(\alpha^{-n}+\beta^{-n})(\alpha+\beta)^n$
(1)
$A_{1},A_{2}$の値を求めよ
(2)
$A_{n}$はすべての自然数$n$について整数であることを示せ
出典:2009年お茶の水女子大学 過去問
確率 漸化式 なぜ計算ミスに気づけたか
単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む
原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
この動画を見る
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む
原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$
$a_{n+1}=3a_{n}+6n^2-12n+2$
一般項を求めよ
出典:大阪工業大学 過去問
この動画を見る
$a_{1}=3$
$a_{n+1}=3a_{n}+6n^2-12n+2$
一般項を求めよ
出典:大阪工業大学 過去問