数B
数B
❗️

福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師:
福田次郎
問題文全文(内容文):
$\left\{a_n\right\}$を$a_1=-15$および
$a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)$
を満たす数列とする。
(1)$a_n$が最小となる自然数nを全て求めよ。
(2)$\left\{a_n\right\}$の一般項を求めよ。
(3)$\sum_{k=1}^na_k$が最小となる自然数nを全て求めよ。
2022北海道大学文系過去問
この動画を見る
$\left\{a_n\right\}$を$a_1=-15$および
$a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)$
を満たす数列とする。
(1)$a_n$が最小となる自然数nを全て求めよ。
(2)$\left\{a_n\right\}$の一般項を求めよ。
(3)$\sum_{k=1}^na_k$が最小となる自然数nを全て求めよ。
2022北海道大学文系過去問
階乗に関する問題 巣鴨高校(改)

単元:
#数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$1!+2!+3!+4!+5!+\cdots +18!+19!+20!$
を計算した結果の下2ケタを求めよ。
巣鴨高等学校(改)
この動画を見る
$1!+2!+3!+4!+5!+\cdots +18!+19!+20!$
を計算した結果の下2ケタを求めよ。
巣鴨高等学校(改)
ざ・見掛け倒し

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
この動画を見る
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。
2022京都大学文系過去問
この動画を見る
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。
2022京都大学文系過去問
【高校数学】シグマの例題演習~文字の扱いが難しい~ 3-8.5【数学B】

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$$1,1+2,1+2+3,\cdots,1+2+3+\cdots+n,\cdots$$
となる数列の初項から第k項までの 総和を求めなさい。
この動画を見る
$$1,1+2,1+2+3,\cdots,1+2+3+\cdots+n,\cdots$$
となる数列の初項から第k項までの 総和を求めなさい。
東京大2022理系

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。
2022東京大学理系
この動画を見る
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。
2022東京大学理系
福田の入試問題解説〜東京大学2022年文系第3問〜漸化式と最大公約数

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=4, a_{n+1}=a_n^2+n(n+2)$
(1)$a_{2022}$を3で割った余りを求めよ。
(2)$a_{2022},a_{2023},a_{2024}$の最大公約数を求めよ。
2022東京大学文系過去問
この動画を見る
数列$\left\{a_n\right\}$を次のように定める。
$a_1=4, a_{n+1}=a_n^2+n(n+2)$
(1)$a_{2022}$を3で割った余りを求めよ。
(2)$a_{2022},a_{2023},a_{2024}$の最大公約数を求めよ。
2022東京大学文系過去問
一橋大 漸化式

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
同時に1個ずつ取り出して入れかえる.
n回後にAがA,Bである確率を求めよ.
2022一橋大過去問
この動画を見る
同時に1個ずつ取り出して入れかえる.
n回後にAがA,Bである確率を求めよ.
2022一橋大過去問
大学入試問題#141 島根大学(2020) 数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数B
指導講師:
ますただ
問題文全文(内容文):
$a_n=\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{(n+3)(n+5))},n:奇数 \\
\displaystyle \frac{1}{(n+4)(n+6)},n:偶数
\end{array}
\right.
\end{eqnarray}$
$\displaystyle \sum_{n=1}^{\infty}a_k$を求めよ。
出典:2020年島根大学 入試問題
この動画を見る
$a_n=\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{1}{(n+3)(n+5))},n:奇数 \\
\displaystyle \frac{1}{(n+4)(n+6)},n:偶数
\end{array}
\right.
\end{eqnarray}$
$\displaystyle \sum_{n=1}^{\infty}a_k$を求めよ。
出典:2020年島根大学 入試問題
【高校数学】計算のテクニック~シグマの例題演習~ 3-8.5【数学B】

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の和を求めよ。
$$1^{ 2 }・2+2^{ 2 }・3+3^{ 2 }・4+\cdots+n^{ 2 }・(n+1)$$
この動画を見る
次の和を求めよ。
$$1^{ 2 }・2+2^{ 2 }・3+3^{ 2 }・4+\cdots+n^{ 2 }・(n+1)$$
どっかの都道府県の教採の問題 数列 個人的に数列では過去一の難問

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n5^{-k}k(k+1)a_k=2(n+\displaystyle \frac{1}{4})^2$
(1)$a_n$を求めよ。
(2)$\displaystyle \sum_{k=1}^na_k$を求めよ。
この動画を見る
$\displaystyle \sum_{k=1}^n5^{-k}k(k+1)a_k=2(n+\displaystyle \frac{1}{4})^2$
(1)$a_n$を求めよ。
(2)$\displaystyle \sum_{k=1}^na_k$を求めよ。
福田の数学〜京都大学2022年理系第6問〜漸化式の解法

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
数列$\left\{x_n\right\}, \left\{y_n\right\}$を次の式
$x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3} (n=1,2,3,\ldots)$
$y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4 (m=0,1,2,3,\ldots)$
により定める。このとき、数列$\left\{x_n-y_n\right\}$の一般項を求めよ。
2022京都大学理系過去問
この動画を見る
数列$\left\{x_n\right\}, \left\{y_n\right\}$を次の式
$x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3} (n=1,2,3,\ldots)$
$y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4 (m=0,1,2,3,\ldots)$
により定める。このとき、数列$\left\{x_n-y_n\right\}$の一般項を求めよ。
2022京都大学理系過去問
福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

単元:
#大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
aは$a\neq 1$を満たす正の実数とする。xy平面上の点$P_1,P_2,\ldots\ldots,P_n,\ldots\ldots$および
$Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldots$が、すべての自然数nについて
$\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n }, \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})$
を満たしているとする。また$P_n$の座標を$(x_n,y_n)$とする。
(1)$x_{n+2}$を$a, x_n, x_{n+1}$で表せ。
(2)$x_1=0, x_2=1$のとき、数列$\left\{x_n\right\}$の一般項を求めよ。
(3)$y_1=\frac{a}{(1-a)^2}, y_2-y_1=1$のとき数列$\left\{y_n\right\}$の一般項を求めよ。
2022北海道大学理系過去問
この動画を見る
aは$a\neq 1$を満たす正の実数とする。xy平面上の点$P_1,P_2,\ldots\ldots,P_n,\ldots\ldots$および
$Q_1,Q_2,\ldots\ldots,Q_n,\ldots\ldots$が、すべての自然数nについて
$\overrightarrow{ P_nP_{n+1} }=(1-a)\overrightarrow{ P_nQ_n }, \overrightarrow{ Q_nQ_{n+1} }=(0, \frac{a^{-n}}{1-a})$
を満たしているとする。また$P_n$の座標を$(x_n,y_n)$とする。
(1)$x_{n+2}$を$a, x_n, x_{n+1}$で表せ。
(2)$x_1=0, x_2=1$のとき、数列$\left\{x_n\right\}$の一般項を求めよ。
(3)$y_1=\frac{a}{(1-a)^2}, y_2-y_1=1$のとき数列$\left\{y_n\right\}$の一般項を求めよ。
2022北海道大学理系過去問
福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$の初項から第n項までの和$S_n$、数列$\left\{b_n\right\}$の初項から第n項までの和$T_n$
はそれぞれ
$S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k$
で表される。
(1)$x \gt y \geqq 1$を満たす自然数x,yについて、
${}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,$
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、$i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },$
$p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }$である。
(2)$a_2,b_4$の値をそれぞれ求めると$a_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }$である。
(3)$S_n,a_n$をそれぞれnの式で表すと、$S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }$である。
(4)$b_n$をnの式で表すと、$b_n=\boxed{\ \ ナ\ \ }$である。
2022慶應義塾大学薬学部過去問
この動画を見る
数列$\left\{a_n\right\}$の初項から第n項までの和$S_n$、数列$\left\{b_n\right\}$の初項から第n項までの和$T_n$
はそれぞれ
$S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k$
で表される。
(1)$x \gt y \geqq 1$を満たす自然数x,yについて、
${}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,$
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、$i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },$
$p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }$である。
(2)$a_2,b_4$の値をそれぞれ求めると$a_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }$である。
(3)$S_n,a_n$をそれぞれnの式で表すと、$S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }$である。
(4)$b_n$をnの式で表すと、$b_n=\boxed{\ \ ナ\ \ }$である。
2022慶應義塾大学薬学部過去問
例の“あれ”を使うだけの問題

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ f(n)=\dfrac{1}{2^n}+\dfrac{1}{3^n}+\dfrac{1}{4^n}+…+\dfrac{1}{2022^n}$
$ \displaystyle \sum_{n=2}^{\infty}f(n)=?$これを解け.
この動画を見る
$ f(n)=\dfrac{1}{2^n}+\dfrac{1}{3^n}+\dfrac{1}{4^n}+…+\dfrac{1}{2022^n}$
$ \displaystyle \sum_{n=2}^{\infty}f(n)=?$これを解け.
2022都立入試 整数問題証明(11の倍数)

単元:
#数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る
2022都立入試 整数問題証明に関して解説していきます.
大学入試問題#123 鳥取大学 改 (2020) Σの計算

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 2^k$を計算せよ。
出典:2020年鳥取大学 入試問題
この動画を見る
$\displaystyle \sum_{k=1}^n k^2 2^k$を計算せよ。
出典:2020年鳥取大学 入試問題
【高校数学】和の記号・シグマの公式の証明 3-8.5【数学B】

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次式を証明せよ。
$\displaystyle \sum_{i=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$
$\displaystyle \sum_{i=1}^n k^3=\{ \frac{1}{2}n(n+1)\}^2$
この動画を見る
次式を証明せよ。
$\displaystyle \sum_{i=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$
$\displaystyle \sum_{i=1}^n k^3=\{ \frac{1}{2}n(n+1)\}^2$
高校入試だけど確率漸化式!?西大和学園2022入試問題解説100問解説!!58問目

単元:
#数学(中学生)#中2数学#確率#数列#漸化式#高校入試過去問(数学)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照
2022西大和学園高等学校
この動画を見る
正四面体の頂点を、点Pが1秒ごとに今ある頂点以外の頂点に等しい確率で移動する
点Pが最初に点Aにあるとき4秒後に点Aにある確率は?
*図は動画内参照
2022西大和学園高等学校
2022藤田医科大 等差数列の超基本問題

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
公差が0でない整数の等差数列$a_n$がある
$\sum_{ }^{ } a_n$はn=7で
最大値119 $a_n$を求めよ。
藤田医学科大学
この動画を見る
公差が0でない整数の等差数列$a_n$がある
$\sum_{ }^{ } a_n$はn=7で
最大値119 $a_n$を求めよ。
藤田医学科大学
大学入試問題#105 京都大学(2003) 数列

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$a_n \gt 0,\ a_1=1$
$n \geqq 2$のとき
$log\ a_n-log\ a_{n-1}=log(n-1)-log(n+1)$である。
$\displaystyle \sum_{k=1}^n a_k$を求めよ
出典:2003年京都大学 入試問題
この動画を見る
$a_n \gt 0,\ a_1=1$
$n \geqq 2$のとき
$log\ a_n-log\ a_{n-1}=log(n-1)-log(n+1)$である。
$\displaystyle \sum_{k=1}^n a_k$を求めよ
出典:2003年京都大学 入試問題
Σ

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
2022藤田医科大 出題意図は「瞬殺せよ」なのかな?

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=5,$
$a_{n+1}=3a_n+2$
$\displaystyle \frac{a_{16}-a_{13}}{a_{12}-a_9}$
の値を求めよ。
2022年藤田医科大学 過去問
この動画を見る
$a_1=5,$
$a_{n+1}=3a_n+2$
$\displaystyle \frac{a_{16}-a_{13}}{a_{12}-a_9}$
の値を求めよ。
2022年藤田医科大学 過去問
大学入試問題#97 学習院大学(2003) 整数問題 帰納法

単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師:
ますただ
問題文全文(内容文):
$n$:自然数
$11^{n+1}+12^{2n-1}$は$19$で割り切れることを示せ
出典:2003年学習院大学 入試問題
この動画を見る
$n$:自然数
$11^{n+1}+12^{2n-1}$は$19$で割り切れることを示せ
出典:2003年学習院大学 入試問題
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

単元:
#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。
(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。
$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$ ①$\frac{\sqrt3}{4}$ ②$\frac{\sqrt3}{80}$ ③$\frac{3}{40}$
$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209 ①0.251 ②0.286 ③0.395
(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。
花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから
$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。
$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36
2022共通テスト数学過去問
この動画を見る
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。
(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。
$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$ ①$\frac{\sqrt3}{4}$ ②$\frac{\sqrt3}{80}$ ③$\frac{3}{40}$
$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209 ①0.251 ②0.286 ③0.395
(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。
花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから
$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。
$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。
(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。
花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。
$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$
以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$
(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。
2022共通テスト数学過去問
この動画を見る
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。
(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。
花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。
$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$
以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$
(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。
2022共通テスト数学過去問
無題

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ax+by=4$
$ax^2+by^2=2$
$ax^3+by^3=6$
$ax^4+by^4=38$
$ax^5+by^5=\Box$
これを解け.
この動画を見る
$ax+by=4$
$ax^2+by^2=2$
$ax^3+by^3=6$
$ax^4+by^4=38$
$ax^5+by^5=\Box$
これを解け.
【高校数学】和の記号・シグマ~数列の和を丁寧に~ 3-8【数学B】

【数学B/数列】an+1=pan+q型の漸化式(特性方程式)

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$ $a_{n+1}=3a_n-2$
この動画を見る
次のように定義される数列{$a_n$}の一般項$a_n$を求めよ。
$a_1=2,$ $a_{n+1}=3a_n-2$
