数B
早稲田大学 数列、複素数
単元:
#大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
この動画を見る
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
新潟大 漸化式 証明
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$
(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ
(2)
$a_{n} \gt a_{n+1}$を示せ
(3)
$a_{n} \lt 0.03$となる最小の自然数$n$
出典:2013年新潟大学 過去問
この動画を見る
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$
(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ
(2)
$a_{n} \gt a_{n+1}$を示せ
(3)
$a_{n} \lt 0.03$となる最小の自然数$n$
出典:2013年新潟大学 過去問
千葉大 漸化式 証明
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
この動画を見る
$a_{n}\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}$
$n \geqq 2$の自然数
(1)
$a_{n}$は整数
(2)
$a_{n}$を3で割ると余りは2である
出典:2013年千葉大学 過去問
岡山県立大 バーゼル問題
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
証明せよ
$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k^2} \leqq 2-\displaystyle \frac{1}{n}$
出典:岡山県立大学 過去問
この動画を見る
証明せよ
$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k^2} \leqq 2-\displaystyle \frac{1}{n}$
出典:岡山県立大学 過去問
信州大(医)変な数列
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$
(1)
$a_{24}$を求めよ
(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。
出典:2010年信州大学医学部 過去問
この動画を見る
$a_{2n-1}=n,a_{2n}=a_{n}(n=1,2,3…)$
(1)
$a_{24}$を求めよ
(2)
$a_{1}~a_{1000}$の中に6はいくつあるか。
出典:2010年信州大学医学部 過去問
宇都宮大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$
(1)
$a_{2},a_{3}$を求めよ
(2)
$0 \lt S_{n} \leqq 1$を示せ
(3)
$a_{n}$を求めよ
出典:2008年宇都宮大学 過去問
この動画を見る
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$
(1)
$a_{2},a_{3}$を求めよ
(2)
$0 \lt S_{n} \leqq 1$を示せ
(3)
$a_{n}$を求めよ
出典:2008年宇都宮大学 過去問
山梨大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n+1}=2^{n^2-25n-12}a_{n}$
(1)
一般項を求めよ
(2)
$a_{n} \gt 1$となる最小の$n$
出典:山梨大学 過去問
この動画を見る
$a_{1}=1$
$a_{n+1}=2^{n^2-25n-12}a_{n}$
(1)
一般項を求めよ
(2)
$a_{n} \gt 1$となる最小の$n$
出典:山梨大学 過去問
三重大 逆 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
この動画を見る
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}
(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ
(2)
$S_{n+1}$を$a_{n}$の1次式で表せ
出典:1996年三重大学 過去問
開成中学 整数 等差数列の和
単元:
#算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師:
鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$
(1)
$7^2$
(2)
$10^2$
(3)
$30^2$は何通りあるか
出典:2018年開成中学校 過去問
この動画を見る
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$
(1)
$7^2$
(2)
$10^2$
(3)
$30^2$は何通りあるか
出典:2018年開成中学校 過去問
広島大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
数列${a_n}$
$a_{1}=\displaystyle \frac{1}{3},a_{n+1}=2a_{n}(1-a_{n})$
(1)
すべての自然数$n$で$a_{n} \lt \displaystyle \frac{1}{2}$を示せ
(2)
一般項を求めよ。
出典:1996年広島大学 過去問
この動画を見る
数列${a_n}$
$a_{1}=\displaystyle \frac{1}{3},a_{n+1}=2a_{n}(1-a_{n})$
(1)
すべての自然数$n$で$a_{n} \lt \displaystyle \frac{1}{2}$を示せ
(2)
一般項を求めよ。
出典:1996年広島大学 過去問
京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$
出典:2002年京都大学 過去問
この動画を見る
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$
出典:2002年京都大学 過去問
早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
この動画を見る
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
東大 数学 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$
(1)
$a+b$の値は?
(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ
出典:1997年東京大学 過去問
この動画を見る
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$
(1)
$a+b$の値は?
(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ
出典:1997年東京大学 過去問
山形大 三項間漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=-1$
一般項を求めよ
$2\displaystyle \sum_{k=1}^n a_{k}=3a_{n+1}-2a_{n}-1$
出典:2006年山形大学 過去問
この動画を見る
$a_{1}=-1$
一般項を求めよ
$2\displaystyle \sum_{k=1}^n a_{k}=3a_{n+1}-2a_{n}-1$
出典:2006年山形大学 過去問
東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$
(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ
(2)
$\beta^3$以下の最大の整数を求めよ
(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ
出典:2003年東京大学 過去問
この動画を見る
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$
(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ
(2)
$\beta^3$以下の最大の整数を求めよ
(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ
出典:2003年東京大学 過去問
徳島大 連立漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$
(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ
(2)
$a_{n},b_{n}$の一般項
(3)
$\displaystyle \sum_{k=1}^n ak$
出典:2012年徳島大学 過去問
この動画を見る
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$
(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ
(2)
$a_{n},b_{n}$の一般項
(3)
$\displaystyle \sum_{k=1}^n ak$
出典:2012年徳島大学 過去問
富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ
出典:富山県立大学 過去問
この動画を見る
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ
出典:富山県立大学 過去問
新潟大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{a+2}=\displaystyle \frac{(a_{n+1})^3}{(a_{n})^2}$
$a_{1}=2$
$a_{2}=4$
一般項$a_{n}$を求めよ
出典:1996年新潟大学 過去問
この動画を見る
$a_{a+2}=\displaystyle \frac{(a_{n+1})^3}{(a_{n})^2}$
$a_{1}=2$
$a_{2}=4$
一般項$a_{n}$を求めよ
出典:1996年新潟大学 過去問
香川大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$S_{n}+na_{n}=1$
$a_{n},S_{n}$を$n$で表せ
出典:香川大学 過去問
この動画を見る
$S_{n}+na_{n}=1$
$a_{n},S_{n}$を$n$で表せ
出典:香川大学 過去問
2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問
この動画を見る
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問
和歌山県立医大 奈良女子大 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#和歌山県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$n^3(n^2-1)$が8の倍数であることを示せ($n$)整数
②$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k(k+1)(k+2)(k+3)}$
出典:和歌山県立医科大学/奈良女子大学 過去問
この動画を見る
①$n^3(n^2-1)$が8の倍数であることを示せ($n$)整数
②$\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{k(k+1)(k+2)(k+3)}$
出典:和歌山県立医科大学/奈良女子大学 過去問
群馬大 整数問題 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$素数、$m,n$整数$(m \neq 0)$
$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列
$p,m,n$を求めよ
出典:群馬大学 過去問
この動画を見る
$p$素数、$m,n$整数$(m \neq 0)$
$n,p-m,m+n$がこの順に等差数列
$p-m,n,p+m$がこの順に等比数列
$p,m,n$を求めよ
出典:群馬大学 過去問
近畿大 展開 係数 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$
(1)
$x^7$の係数
(2)
$x^6$の係数
出典:2012年近畿大学 過去問
この動画を見る
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$
(1)
$x^7$の係数
(2)
$x^6$の係数
出典:2012年近畿大学 過去問
東北大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=3$ $a_{n+1} \gt a_{n}$
$n$自然数 一般項を求めよ
$a^2_{n}-2a_{n}a_{n+1}+a_{n+1}^2=3(a_{n}+a_{n+1})$
出典:2015年東北大学 過去問
この動画を見る
$a_{1}=3$ $a_{n+1} \gt a_{n}$
$n$自然数 一般項を求めよ
$a^2_{n}-2a_{n}a_{n+1}+a_{n+1}^2=3(a_{n}+a_{n+1})$
出典:2015年東北大学 過去問
兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ
出典:2002年兵庫医科大学 過去問
この動画を見る
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ
出典:2002年兵庫医科大学 過去問
岡山大(医)漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$pq\neq0$ $a_{1}=1$ $n=1,2,3$
$a_{n+1}=pa_{n}+\displaystyle \frac{q-p}{2}q^{n-1}$
一般項を求めよ。
出典:2008年岡山大学 過去問
この動画を見る
$pq\neq0$ $a_{1}=1$ $n=1,2,3$
$a_{n+1}=pa_{n}+\displaystyle \frac{q-p}{2}q^{n-1}$
一般項を求めよ。
出典:2008年岡山大学 過去問
広島大 数列の和 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{7}{1・2・3}+\displaystyle \frac{11}{2・3・4}+\displaystyle \frac{15}{3・4・5}+…$
分子は等差数列
分母は連続3数の積
出典:1993年広島大学 過去問
この動画を見る
$\displaystyle \frac{7}{1・2・3}+\displaystyle \frac{11}{2・3・4}+\displaystyle \frac{15}{3・4・5}+…$
分子は等差数列
分母は連続3数の積
出典:1993年広島大学 過去問
群馬大 漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=15$
$a_{x}=2a_{n-1}+4^n-1$
(1)
$a_{n}$を$n$を用いて表せ
(2)
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{2^n}{a_{n}}$
出典:1993年群馬大学 過去問
この動画を見る
$a_{1}=15$
$a_{x}=2a_{n-1}+4^n-1$
(1)
$a_{n}$を$n$を用いて表せ
(2)
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{2^n}{a_{n}}$
出典:1993年群馬大学 過去問
宇都宮大 連立漸化式 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n,a_{n},b_{n}$自然数
$(1+\sqrt{ 2 })^n=a_{n}+b\sqrt{ 2 }$とする
$a^2_{n}-2b^2_{n}=(-1)^n$を示せ
出典:宇都宮大学 過去問
この動画を見る
$n,a_{n},b_{n}$自然数
$(1+\sqrt{ 2 })^n=a_{n}+b\sqrt{ 2 }$とする
$a^2_{n}-2b^2_{n}=(-1)^n$を示せ
出典:宇都宮大学 過去問
熊本大(医)連立漸化式 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=2,b_{1}=1$
$a_{k+1}=3a_{k}+b_{k}$
$b_{k+1}=a_{k}+3b_{k}$
出典:熊本大学 過去問
この動画を見る
$a_{1}=2,b_{1}=1$
$a_{k+1}=3a_{k}+b_{k}$
$b_{k+1}=a_{k}+3b_{k}$
出典:熊本大学 過去問