関数の変化(グラフ・最大最小・方程式・不等式)
福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。
2018神戸大学理系過去問
この動画を見る
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。
2018神戸大学理系過去問
福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
この動画を見る
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。
2018名古屋大学理系過去問
この動画を見る
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。
2018名古屋大学理系過去問
福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。
2018京都大学理系過去問
この動画を見る
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。
2018京都大学理系過去問
福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。
2020青山学院大学理工学部過去問
この動画を見る
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。
2020青山学院大学理工学部過去問
福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。
2017神戸大学文系過去問
この動画を見る
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。
2017神戸大学文系過去問
【数Ⅲ】不等式を微分を使って証明する【増減表を見て最小値を探す】
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
$(1)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$(2)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$ →\displaystyle \lim_{x\to \infty}\dfrac{\log x}{x}=0が示せ.$
$(3)x \gt 1のとき,\log x \gt \dfrac{2(x-1)}{x+1}を示せ.$
$(4)x \gt 0のとき,\sin x \gt x-\dfrac{x^2}{2}を示せ.$
この動画を見る
$(1)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$(2)x \gt 1のとき\log x \lt \sqrt xを示せ.$
$ →\displaystyle \lim_{x\to \infty}\dfrac{\log x}{x}=0が示せ.$
$(3)x \gt 1のとき,\log x \gt \dfrac{2(x-1)}{x+1}を示せ.$
$(4)x \gt 0のとき,\sin x \gt x-\dfrac{x^2}{2}を示せ.$
東京電機大 最大値・最小値
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.
東京電機大過去問
この動画を見る
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.
東京電機大過去問
あけましておめでとうございます
【数Ⅲ】陰関数のグラフ【対称性を使って最低限の労力でグラフを描く】
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
$ (1)y^2=x^2(4-x^2)のグラフを描け.$
$ (2)y^2=x^2(4-x^2)をyについて解け.$
この動画を見る
$ (1)y^2=x^2(4-x^2)のグラフを描け.$
$ (2)y^2=x^2(4-x^2)をyについて解け.$
大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを実数とし、f(x)=x^3-3axとする。区間-1 \leqq x \leqq 1における\\
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。
\end{eqnarray}
2016一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} aを実数とし、f(x)=x^3-3axとする。区間-1 \leqq x \leqq 1における\\
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。
\end{eqnarray}
2016一橋大学文系過去問
福田の1.5倍速演習〜合格する重要問題017〜東北大学2016年度理系数学第6問〜定積分で表された関数
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} 関数\\
f(x)=\int_0^{\pi}|\sin(t-x)-\sin2t|dt\\
の区間\ 0 \leqq x \leqq \pi\ における最大値と最小値を求めよ。
\end{eqnarray}
2016東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} 関数\\
f(x)=\int_0^{\pi}|\sin(t-x)-\sin2t|dt\\
の区間\ 0 \leqq x \leqq \pi\ における最大値と最小値を求めよ。
\end{eqnarray}
2016東北大学理系過去問
東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。
$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$
(2)次の不等式を示せ。
$0.9999^{101}<0.99<0.9999^{100}$
東大過去問
この動画を見る
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。
$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$
(2)次の不等式を示せ。
$0.9999^{101}<0.99<0.9999^{100}$
東大過去問
福田の1.5倍速演習〜合格する重要問題009〜九州大学2015年度理系数学第2問〜関数の増減と区分求積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 以下の問いに答えよ。\\
(1)関数\ y=\frac{1}{x(\log x)^2}はx \gt 1において単調に減少することを示せ。\\
\\
(2)不定積分\ \int\frac{1}{x(\log x)^2}dx を求めよ。\\
\\
(3)nを3以上の整数とするとき、不等式\\
\sum_{k=3}^n\frac{1}{k(\log k)^2} \lt \frac{1}{\log 2}\\
が成り立つことを示せ。
\end{eqnarray}
2015九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 以下の問いに答えよ。\\
(1)関数\ y=\frac{1}{x(\log x)^2}はx \gt 1において単調に減少することを示せ。\\
\\
(2)不定積分\ \int\frac{1}{x(\log x)^2}dx を求めよ。\\
\\
(3)nを3以上の整数とするとき、不等式\\
\sum_{k=3}^n\frac{1}{k(\log k)^2} \lt \frac{1}{\log 2}\\
が成り立つことを示せ。
\end{eqnarray}
2015九州大学理系過去問
【数Ⅲ】グラフを描く【チェックするべきポイントを押さえる】
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
グラフを描くことに関して解説していきます.
この動画を見る
グラフを描くことに関して解説していきます.
福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}次の問いに答えよ。\hspace{180pt}\\
(1)関数f(x)=x^{-2}2^x(x≠0)について、f'(x) \gt 0となるための\\
xに関する条件を求めよ。\hspace{148pt}\\
(2)方程式2^x=x^2は相異なる3個の実数解をもつことを示せ。\hspace{18pt}\\
(3)方程式2^x=x^2の解で有理数であるものを全て求めよ。\hspace{32pt}
\end{eqnarray}
2015名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}次の問いに答えよ。\hspace{180pt}\\
(1)関数f(x)=x^{-2}2^x(x≠0)について、f'(x) \gt 0となるための\\
xに関する条件を求めよ。\hspace{148pt}\\
(2)方程式2^x=x^2は相異なる3個の実数解をもつことを示せ。\hspace{18pt}\\
(3)方程式2^x=x^2の解で有理数であるものを全て求めよ。\hspace{32pt}
\end{eqnarray}
2015名古屋大学理系過去問
福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(1)mを実数とする。xについての2次方程式x^2-(m+3)x+m^2-9=0の\hspace{80pt}\\
二つの解をα,βとする。α,βが実数であるための必要十分条件は- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }である。\\
mが- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }の範囲を動くときの\hspace{190pt}\\
α^3+β^3の最小値は\boxed{\ \ ウ\ \ }、最大値は\boxed{\ \ エオカ\ \ }である。\hspace{160pt}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}(1)mを実数とする。xについての2次方程式x^2-(m+3)x+m^2-9=0の\hspace{80pt}\\
二つの解をα,βとする。α,βが実数であるための必要十分条件は- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }である。\\
mが- \boxed{\ \ ア\ \ } \leqq m \leqq \boxed{\ \ イ\ \ }の範囲を動くときの\hspace{190pt}\\
α^3+β^3の最小値は\boxed{\ \ ウ\ \ }、最大値は\boxed{\ \ エオカ\ \ }である。\hspace{160pt}
\end{eqnarray}
福田の数学〜中央大学2022年経済学部第1問(3)〜三角不等式
単元:
#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(3)0\leqq x\leqq \piのとき、次の不等式を解け。\\
\sin^2x-\cos^2x+sinx \gt 0
\end{eqnarray}
2022中央大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}(3)0\leqq x\leqq \piのとき、次の不等式を解け。\\
\sin^2x-\cos^2x+sinx \gt 0
\end{eqnarray}
2022中央大学経済学部過去問
福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。\\
\int xe^{-3x}dx = -(\frac{\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }})\ e^{-3x}+C\\
\int x^2e^{-3x}dx = -(\frac{\boxed{\ \ エ\ \ }\ x^2+\boxed{\ \ オ\ \ }\ x+\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }})\ e^{-3x}+C\\
また、定積分について、\\
\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{\ \ ケ\ \ }}(-1+\boxed{\ \ コ\ \ }\ e^{\boxed{\ \ サシ\ \ }}-\boxed{\ \ スセ\ \ }\ e^{-3})\\
が成り立つ。\\
\\
(2)p,q,rを実数の定数とする。関数f(x)=(px^2+qx+r)e^{-3x}がx=0で極大、\\
x=1で極小となるための必要十分条件は\\
p=\boxed{\ \ ソタ\ \ }\ r,\ \ \ q=\boxed{\ \ チ\ \ }\ r,\ \ \ \boxed{\ \ ツ\ \ }\\
である。さらに、f(x)の極小値が-1であるとすると、f(x)の極大値は\frac{e^{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}となる。\\
このとき、\int_0^1f(x)dx=\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}である。\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1\ \ \ \ \\
⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}\ \ \ \
\end{eqnarray}
2022杏林大学医学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。\\
\int xe^{-3x}dx = -(\frac{\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }})\ e^{-3x}+C\\
\int x^2e^{-3x}dx = -(\frac{\boxed{\ \ エ\ \ }\ x^2+\boxed{\ \ オ\ \ }\ x+\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }})\ e^{-3x}+C\\
また、定積分について、\\
\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{\ \ ケ\ \ }}(-1+\boxed{\ \ コ\ \ }\ e^{\boxed{\ \ サシ\ \ }}-\boxed{\ \ スセ\ \ }\ e^{-3})\\
が成り立つ。\\
\\
(2)p,q,rを実数の定数とする。関数f(x)=(px^2+qx+r)e^{-3x}がx=0で極大、\\
x=1で極小となるための必要十分条件は\\
p=\boxed{\ \ ソタ\ \ }\ r,\ \ \ q=\boxed{\ \ チ\ \ }\ r,\ \ \ \boxed{\ \ ツ\ \ }\\
である。さらに、f(x)の極小値が-1であるとすると、f(x)の極大値は\frac{e^{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}となる。\\
このとき、\int_0^1f(x)dx=\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}である。\\
\\
\\
\boxed{\ \ ツ\ \ }の解答群\\
①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1\ \ \ \ \\
⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}\ \ \ \
\end{eqnarray}
2022杏林大学医学部過去問
福田の数学〜北里大学2022年医学部第2問〜定積分と不等式
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 次の各問いに答えよ。\hspace{210pt}\\
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。\hspace{160pt}\\
(2)x≠0を満たすすべての実数xに対して、e^x \gt 1+xとe^{-x^2} \lt \frac{1}{1+x^2}が\hspace{8pt}\\
成り立つことを証明せよ。\hspace{192pt}\\
(3)\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}が成り立つことを証明せよ。\hspace{88pt}
\end{eqnarray}
2022北里大学医学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ 次の各問いに答えよ。\hspace{210pt}\\
(1)定積分\int^1_0\frac{1}{1+x^2}dxを求めよ。\hspace{160pt}\\
(2)x≠0を満たすすべての実数xに対して、e^x \gt 1+xとe^{-x^2} \lt \frac{1}{1+x^2}が\hspace{8pt}\\
成り立つことを証明せよ。\hspace{192pt}\\
(3)\frac{2}{3} \lt \int^1_0e^{-x^2}dx \lt \frac{\pi}{4}が成り立つことを証明せよ。\hspace{88pt}
\end{eqnarray}
2022北里大学医学部過去問
福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}
2022中央大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}}\ 関数 f(x) = -xe^x を考える。曲線C: y = f(x)の点(a, f(a)) における接線をl_aと\\
し、接線l_aとy軸の交点を (0, g(a)) とおく。以下の問いに答えよ。\hspace{60pt}\\
(1) 接線l_aの方程式とg (a)を求めよ。\hspace{170pt}\\
以下、aの関数g (a) が極大値をとるときのaの値をbとおく。\hspace{79pt}\\
(2) bを求め、点(b, f(b)) は曲線Cの変曲点であることを示せ。\hspace{76pt}\\
(3) 曲線Cの点 (b, f(b)) における接線l_bと x軸の交点のx座標cを求めよ。さらに、\hspace{10pt}\\
c\leqq x\leqq 0の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。\hspace{50pt}\\
(4)曲線C、接線l_bおよびy軸で囲まれた部分の面積Sを求めよ。 \hspace{73pt}
\end{eqnarray}
2022中央大学理工学部過去問
福田の数学〜上智大学2022年TEAP文系型第4問(3)〜指数不等式と領域における最小
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{4}}\ (3)\ 正の数の組(x,\ y)が\hspace{180pt}\\
\left\{
\begin{array}{1}
x \geqq 1\\
y \geqq 1\\
x^5y^4 \geqq 100\\
x^2y^9 \geqq 100\\
\end{array}
\right.\hspace{180pt}\\
を満たすときz=xyは(x,\ y)=(a,\ b)で最小値をとる。ここで、\\
\log_{10}a=\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }},\ \log_{10}b=\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ワ\ \ }}\hspace{90pt}\\
である。 \hspace{220pt}
\end{eqnarray}
2022上智大学文系過去問
福田の数学〜立教大学2022年理学部第2問〜接線と囲まれた部分の面積と回転体の体積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ 実数xに対し、関数f(x)を\hspace{233pt}\\
f(x)=xe^{-x}\hspace{203pt}\\
により定める。座標平面上の曲線C:y=f(x)に関して、次の問(1)~(5)に答えよ。\hspace{7pt}\\
(1)f(x)の導関数f'(x)を求め、f(x)の増減表を書け。ただし、極値も記入すること。\\
(2)f(x)の第2次導関数f''(x)を求め、Cの変曲点の座標を求めよ。\hspace{75pt}\\
(3)Cの変曲点と、座標平面上の原点を通る直線をlとする。\hspace{102pt}\\
Cとlで囲まれた領域の面積Sを求めよ。\hspace{175pt}\\
(4)a,\ b,\ cを定数とし、関数g(x)をg(x)=(ax^2+bx+c)e^{-2x}と定める。\hspace{43pt}\\
g(x)の導関数g'(x)がg'(x)=x^2e^{-2x}を満たすとき、a,\ b,\ cの値を求めよ。\hspace{29pt}\\
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる\hspace{61pt}\\
回転体の体積Vを求めよ。\hspace{222pt}
\end{eqnarray}
2022立教大学理学部過去問
答えが出ればいいか!?
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$とする.
$x^x=2^{2048}$のxを求めよ.
この動画を見る
$ x\gt 0$とする.
$x^x=2^{2048}$のxを求めよ.
福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分
単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}} \ a,\ hを正の実数とする。座標平面において、原点Oからの距離が、\hspace{110pt}\\
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x,\ y)とする\\
と、x,\ y\ は次の方程式を満たす。\\
(1-\boxed{\ \ ア\ \ })\ x^2+2\ \boxed{\ \ イ\ \ }\ x+y^2=\boxed{\ \ ウ\ \ }\ \ \ \ \ ...(1) \\
\\
\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ }\ の解答群\\
⓪a^2\ \ \ ①h^2\ \ \ ②a^3\ \ \ ③a^2h\ \ \ ④ah^2\ \ \ \\
⑤h^3\ \ \ ⑥a^4\ \ \ ⑦a^2h^2\ \ \ ⑧ah^3\ \ \ ⑨h^4\ \ \ \\
\\
次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。\\
点Pの極座標を(r\ θ)とする。r \leqq hを満たすとき、点Pの直交座標(x,\ y)をa,\ h,\ θ\\
を用いて表すと\\
(x,\ y)=(\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \cos θ,\ \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \sin θ)\ \ \ \ \ ...(2) \\
\\
\boxed{\ \ エ\ \ },\ \boxed{\ \ オ\ \ }\ の解答群\\
⓪h\ \ \ ①ah\ \ \ ②h^2\ \ \ ③ah^2\ \ \ ④1+a\cos θ\ \ \ \\
⑤1+a\sin θ\ \ \ ⑥a\cos θ-1\ \ \ ⑦a\sin θ-1\ \ \ ⑧1-a\cos θ\ \ \ ⑨1-a\sin θ\ \ \ \\
\\
(1)から、a=\boxed{\ \ カ\ \ }のとき、点Pの軌跡は放物線\ x=\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ }となる。\\
この放物線とy軸で囲まれた図形の面積Sは\\
S=2\int_0^{\boxed{\ \ ケ\ \ }}xdy=2\int_0^{\boxed{\ \ ケ\ \ }}(\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ })dy=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ h^2\\
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。\\
\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
\\
\boxed{\ \ キ\ \ },\ \boxed{\ \ ク\ \ },\ \boxed{\ \ ケ\ \ }\ の解答群\\
⓪h\ \ \ ①2h\ \ \ ②\frac{h}{2}\ \ \ ③-\frac{h}{2}\ \ \ ④\frac{1}{h}\ \ \ \\
⑤-\frac{1}{h}\ \ \ ⑥\frac{1}{2h}\ \ \ ⑦-\frac{1}{2h}\ \ \ ⑧h^2\ \ \ ⑨-h^2\ \ \
\end{eqnarray}
2022明治大学全統理系過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{3}} \ a,\ hを正の実数とする。座標平面において、原点Oからの距離が、\hspace{110pt}\\
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x,\ y)とする\\
と、x,\ y\ は次の方程式を満たす。\\
(1-\boxed{\ \ ア\ \ })\ x^2+2\ \boxed{\ \ イ\ \ }\ x+y^2=\boxed{\ \ ウ\ \ }\ \ \ \ \ ...(1) \\
\\
\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ }\ の解答群\\
⓪a^2\ \ \ ①h^2\ \ \ ②a^3\ \ \ ③a^2h\ \ \ ④ah^2\ \ \ \\
⑤h^3\ \ \ ⑥a^4\ \ \ ⑦a^2h^2\ \ \ ⑧ah^3\ \ \ ⑨h^4\ \ \ \\
\\
次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。\\
点Pの極座標を(r\ θ)とする。r \leqq hを満たすとき、点Pの直交座標(x,\ y)をa,\ h,\ θ\\
を用いて表すと\\
(x,\ y)=(\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \cos θ,\ \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ \sin θ)\ \ \ \ \ ...(2) \\
\\
\boxed{\ \ エ\ \ },\ \boxed{\ \ オ\ \ }\ の解答群\\
⓪h\ \ \ ①ah\ \ \ ②h^2\ \ \ ③ah^2\ \ \ ④1+a\cos θ\ \ \ \\
⑤1+a\sin θ\ \ \ ⑥a\cos θ-1\ \ \ ⑦a\sin θ-1\ \ \ ⑧1-a\cos θ\ \ \ ⑨1-a\sin θ\ \ \ \\
\\
(1)から、a=\boxed{\ \ カ\ \ }のとき、点Pの軌跡は放物線\ x=\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ }となる。\\
この放物線とy軸で囲まれた図形の面積Sは\\
S=2\int_0^{\boxed{\ \ ケ\ \ }}xdy=2\int_0^{\boxed{\ \ ケ\ \ }}(\boxed{\ \ キ\ \ }\ y^2+\boxed{\ \ ク\ \ })dy=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ h^2\\
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。\\
\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
\\
\boxed{\ \ キ\ \ },\ \boxed{\ \ ク\ \ },\ \boxed{\ \ ケ\ \ }\ の解答群\\
⓪h\ \ \ ①2h\ \ \ ②\frac{h}{2}\ \ \ ③-\frac{h}{2}\ \ \ ④\frac{1}{h}\ \ \ \\
⑤-\frac{1}{h}\ \ \ ⑥\frac{1}{2h}\ \ \ ⑦-\frac{1}{2h}\ \ \ ⑧h^2\ \ \ ⑨-h^2\ \ \
\end{eqnarray}
2022明治大学全統理系過去問
福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 直線x+y=1に接する楕円\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)がある。\\
このとき、b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }である。\\
この楕円を直線y=bのまわりに1回転してできる立体の体積は、\\
a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}\hspace{10pt}のとき、最大値\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2\hspace{10pt}をとる。
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{6}}\ 直線x+y=1に接する楕円\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)がある。\\
このとき、b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }である。\\
この楕円を直線y=bのまわりに1回転してできる立体の体積は、\\
a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}\hspace{10pt}のとき、最大値\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2\hspace{10pt}をとる。
\end{eqnarray}
2022早稲田大学人間科学部過去問
福田の数学〜早稲田大学2022年人間科学部第2問〜三角不等式の解
単元:
#大学入試過去問(数学)#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)を満たす\thetaの範囲は\\
0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi\hspace{120pt}\\
である。\hspace{280pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ 2\sin\theta+\sin2\theta+2\sin3\theta-2\sin2\theta\cos\theta \gt 0\hspace{10pt}(0 \lt \theta \lt \pi)を満たす\thetaの範囲は\\
0 \lt \theta \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi,\ \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ \pi \lt \theta \lt \pi\hspace{120pt}\\
である。\hspace{280pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}
2022早稲田大学人間科学部過去問
【数Ⅲ】東大の基礎問題!絶対に落としてはいけない!【数学 入試問題】
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数
$f(x)=\dfrac{x}{sin x}+cos x$ ($ 0<x<\pi $)
の増減表を作り,$ x→+0,x→\pi-0$のときの極限を調べよ。
東大過去問
この動画を見る
関数
$f(x)=\dfrac{x}{sin x}+cos x$ ($ 0<x<\pi $)
の増減表を作り,$ x→+0,x→\pi-0$のときの極限を調べよ。
東大過去問