数Ⅲ
東京商船大 微分公式の証明
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$
(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ
(2)
$f(x)$の極値を求めよ
出典:東京海洋大学 過去問
この動画を見る
$f(x)=(x^2-1)^n(n$自然数$)$
(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ
(2)
$f(x)$の極値を求めよ
出典:東京海洋大学 過去問
東工大 y=e^x に引ける接線の数
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ
出典:1980年東京工業大学 過去問
この動画を見る
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ
出典:1980年東京工業大学 過去問
ヨビノリのマンデー積分をぶっ飛ばせ!刺客は本人
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
この動画を見る
$n$自然数、$x,y$実数
$\displaystyle \int_{0}^{ 1 } (\sin(2n\pi t)-xt-y)^2dt$の最小値を$I_n$とおく
$\displaystyle \lim_{ n \to \infty }I_n$を求めよ
出典:2019年九州大学 過去問
積分で面積が出る理由 もっちゃんと学ぶ数学シリーズ
埼玉大 微分積分 三次関数極値の差 ヨビノリ技
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
【数Ⅲ-152】定積分の置換積分法①
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法①)
Q.次の定積分を求めよ。
①$\int_{-2}^1(2x+1)^4 dx$
➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$
③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
この動画を見る
数Ⅲ(定積分の置換積分法①)
Q.次の定積分を求めよ。
①$\int_{-2}^1(2x+1)^4 dx$
➁$\int_{0}^3(5x+2)\sqrt{x+1} \ dx$
③$\int_{1}^2 \frac{x-1}{x^2-2x+2}\ dx$
京都大 3次関数 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
この動画を見る
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
京都大 合成関数 不等式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
この動画を見る
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
東京海洋大 3次関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
この動画を見る
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
京都大 関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
この動画を見る
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
ヨビノリのマンデー積分をぶっ飛ばせ!ヨビノリ編集担当やすさん乱入
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)$を遇関数とする $a \gt 0$
(1)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{f(x)}{e^x+1}dx=\displaystyle \int_{0}^{ a }f(x)dx$を示せ
(2)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{x^2 \cos x+e^x}{e^x+1}dx$を求めよ
出典:信州大学医学部 過去問
この動画を見る
$f(x)$を遇関数とする $a \gt 0$
(1)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{f(x)}{e^x+1}dx=\displaystyle \int_{0}^{ a }f(x)dx$を示せ
(2)
$\displaystyle \int_{-a}^{ a }\displaystyle \frac{x^2 \cos x+e^x}{e^x+1}dx$を求めよ
出典:信州大学医学部 過去問
福島大 3次関数の接線 微分
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ
出典:1991年福島大学 過去問
この動画を見る
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ
出典:1991年福島大学 過去問
【数Ⅲ-151】定積分③(レベルアップ編)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)
Q.次の定積分を求めよ。
①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$
➁$\int_{0}^\pi |cosx |\ dx$
③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
この動画を見る
数Ⅲ(定積分③・レベルアップ編)
Q.次の定積分を求めよ。
①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$
➁$\int_{0}^\pi |cosx |\ dx$
③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
【数Ⅲ-150】定積分②(絶対値編)
単元:
#積分とその応用#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分➁・絶対値編)
Q.次の定積分を求めよ。
①$\int_{1}^9|\sqrt{x}-2|dx$
➁$\int_{1}^{e^2}|logx-1|dx$
この動画を見る
数Ⅲ(定積分➁・絶対値編)
Q.次の定積分を求めよ。
①$\int_{1}^9|\sqrt{x}-2|dx$
➁$\int_{1}^{e^2}|logx-1|dx$
早稲田大(国際教養)微分
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
この動画を見る
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
素数の逆数の和は収束か発散か?杉山&ヨビノリたくみ
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{2}+\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}+…+\displaystyle \frac{1}{p}+…=?$
この動画を見る
$\displaystyle \frac{1}{2}+\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}+…+\displaystyle \frac{1}{p}+…=?$
もっちゃんと真面目に数学 素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散のお話
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
この動画を見る
素数、完全数、約数の個数、総和、メルセンヌ素数、調和級数発散 解説動画です
筑波大 指数・対数関数の微分
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ
出典:筑波大学 過去問
この動画を見る
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ
出典:筑波大学 過去問
自治医科大学
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
この動画を見る
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
大阪大 3次関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
名古屋大 微分 複雑な方程式の解
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
この動画を見る
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
東工大 極限 東大大学院 数学科卒 杉山さん
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
この動画を見る
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
What is e?? The essence of e. Why (e^x)’=e^x
単元:
#関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る
指数関数の微分の補足 解説動画です
名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講
単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
この動画を見る
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」
単元:
#数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
これから数Ⅲを学ぶ人に贈る「ネイピア数eってなんだよ?」
単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
①
$e=\displaystyle \lim_{ x \to \infty }(1+\displaystyle \frac{1}{n})^n$
$=\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
②
$y=e^x$ $y^1=e^x$
③
動画内の図をみて求めよ
④
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$
出典:2019年東京大学入試問題
この動画を見る
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$
出典:2019年東京大学入試問題
2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問
この動画を見る
$a=\displaystyle \frac{2^8}{3^4}$
整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$
(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ
(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ
出典:2019年東京工業大学 過去問