数Ⅲ

【数Ⅲ-146】積分特訓①

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
④$\int \frac{2x+3}{\sqrt{x^2+3x-4}} dx$
⑤$\int x^2\log xdx$
⑥$\int\sin^2\frac{x}{2}dx$
この動画を見る
④$\int \frac{2x+3}{\sqrt{x^2+3x-4}} dx$
⑤$\int x^2\log xdx$
⑥$\int\sin^2\frac{x}{2}dx$
大阪大 3次関数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
【数Ⅲ-145】指数関数・対数関数の積分

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(指数関数・対数関数の積分)
Q.次の不定積分を求めよ
①$\int \frac{1}{x(\log x)^2} dx$
➁$\int \frac{\log x}{x(\log x+1)^2} dx$
③$\int \frac{e^{3x}}{\sqrt{e^x+1}} dx$
この動画を見る
数Ⅲ(指数関数・対数関数の積分)
Q.次の不定積分を求めよ
①$\int \frac{1}{x(\log x)^2} dx$
➁$\int \frac{\log x}{x(\log x+1)^2} dx$
③$\int \frac{e^{3x}}{\sqrt{e^x+1}} dx$
名古屋大 微分 複雑な方程式の解

単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
この動画を見る
(1)
$f(x)=x^{-2}2^x$ $(x \neq 0)$
$f'(x) \gt 0$となる条件を求めよ
(2)
$2^x=x^2$実数解の個数を求めよ
(3)
$2^x=x^2$の有理数解をすべて求めよ
出典:2015年名古屋大学 過去問
【数Ⅲ-144】三角関数の積分②

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分➁)
Q.次の不定積分を求めよ。
⑤$\int cos3xcos2xdx$
⑥$\int cos4xsin2xdx$
⑦$\int sinxsin2xdx$
⑧$\int sin3θ cosθdθ$
この動画を見る
数Ⅲ(三角関数の積分➁)
Q.次の不定積分を求めよ。
⑤$\int cos3xcos2xdx$
⑥$\int cos4xsin2xdx$
⑦$\int sinxsin2xdx$
⑧$\int sin3θ cosθdθ$
【数Ⅲ-143】三角関数の積分①

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分①)
Q.次の不定積分を求めよ
⑤$\int cos^2xdx$
⑥$\int sin^3xdx$
⑦$\int cosx sin^5xdx$
この動画を見る
数Ⅲ(三角関数の積分①)
Q.次の不定積分を求めよ
⑤$\int cos^2xdx$
⑥$\int sin^3xdx$
⑦$\int cosx sin^5xdx$
東工大 極限 東大大学院 数学科卒 杉山さん

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
この動画を見る
$n$自然数
半径$\displaystyle \frac{1}{n}$の円を重ならないように、半径1の円に外接させる。
外接する円の最大個数を$a_{n}$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{a_{n}}{n}$を求めよ
出典:1992年東京工業大学 過去問
【数Ⅲ-142】分数関数の積分②

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分➁)
Q.次の不定積分を求めよ
①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$
➁$\int \frac{x}{x^2+x-6}dx$
③$\int \frac{1}{x^2(x+3)}dx$
この動画を見る
数Ⅲ(分数関数の積分➁)
Q.次の不定積分を求めよ
①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$
➁$\int \frac{x}{x^2+x-6}dx$
③$\int \frac{1}{x^2(x+3)}dx$
【数Ⅲ-141】分数関数の積分①

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分①)
Q次の不定積分を求めよ
①$\int \frac{x-2}{x+1}dx$
➁$\int \frac{x^2-x}{x+1}dx$
③$\int \frac{-x+8}{x^2-x-6}dx$
この動画を見る
数Ⅲ(分数関数の積分①)
Q次の不定積分を求めよ
①$\int \frac{x-2}{x+1}dx$
➁$\int \frac{x^2-x}{x+1}dx$
③$\int \frac{-x+8}{x^2-x-6}dx$
【数Ⅲ-140】部分積分②

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分➁)
Q次の不定積分を求めよ
①$\int \log xdx$
➁$\int \log (x+2)dx$
③$\int (\log x)^2dx$
この動画を見る
数Ⅲ(部分積分➁)
Q次の不定積分を求めよ
①$\int \log xdx$
➁$\int \log (x+2)dx$
③$\int (\log x)^2dx$
What is e?? The essence of e. Why (e^x)’=e^x

単元:
#関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$
(2)
$y=e^x$
(3)
動画内の図を見て求めよ
(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
【数Ⅲ-139】部分積分①

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分①)
Q.次の不定積分を求めよ
①$\int xcosxdx$
➁$\int (x+3)cos2xdx$
③$\int x^2 sinxdx$
この動画を見る
数Ⅲ(部分積分①)
Q.次の不定積分を求めよ
①$\int xcosxdx$
➁$\int (x+3)cos2xdx$
③$\int x^2 sinxdx$
【数Ⅲ-138】置換積分③

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分③)
Q.次の不定積分を求めよ
①$\int (2x+1)(x^2+x-3)^3dx$
➁$\int \frac{2x}{\sqrt{x^2-4}}dx$
③$\int \frac{tanx}{cosx}dx$
この動画を見る
数Ⅲ(置換積分③)
Q.次の不定積分を求めよ
①$\int (2x+1)(x^2+x-3)^3dx$
➁$\int \frac{2x}{\sqrt{x^2-4}}dx$
③$\int \frac{tanx}{cosx}dx$
【数Ⅲ-137】置換積分②

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
Q,次の不定積分を求めよ
①$\int x\sqrt{x+1}dx$
➁$\int(2x-1)(x+1)^3dx$
③$\int \frac{x}{\sqrt{2x+1}}dx$
この動画を見る
Q,次の不定積分を求めよ
①$\int x\sqrt{x+1}dx$
➁$\int(2x-1)(x+1)^3dx$
③$\int \frac{x}{\sqrt{2x+1}}dx$
名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足

単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る
指数関数の微分の補足 解説動画です
名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

単元:
#大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
この動画を見る
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ
出典:2004年名古屋大学 過去問
【数Ⅲ-136】置換積分①

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分①)
Q.次の不定積分を求めよ
①$\int(4x-1)^3dx$
➁$\int sin(2θ +\frac{\pi}{3})dθ$
③$\int^3 \sqrt{2-x}dx$
④$\int \frac{1}{1-3x}dx$
⑤$\int \frac{2x}{x^2+1}dx$
⑥$\int \frac{1}{tanx}dx$
この動画を見る
数Ⅲ(置換積分①)
Q.次の不定積分を求めよ
①$\int(4x-1)^3dx$
➁$\int sin(2θ +\frac{\pi}{3})dθ$
③$\int^3 \sqrt{2-x}dx$
④$\int \frac{1}{1-3x}dx$
⑤$\int \frac{2x}{x^2+1}dx$
⑥$\int \frac{1}{tanx}dx$
【数Ⅲ-135】不定積分③(指数関数編)

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分③・指数関数編)
③$\int (4e^x+3)dx$
④$\int (5^x-2^x)dx$
⑤$\int e^{3x}dx$
この動画を見る
数Ⅲ(不定積分③・指数関数編)
③$\int (4e^x+3)dx$
④$\int (5^x-2^x)dx$
⑤$\int e^{3x}dx$
【数Ⅲ-134】不定積分②(三角関数編)

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分➁・三角関数編)
⑤$\int (4sin x-3cos x)dx$
⑥$\int \frac{cos^3x+5}{cos^2x}dx$
⑦$\int \frac{1}{tan^2x}dx$
この動画を見る
数Ⅲ(不定積分➁・三角関数編)
⑤$\int (4sin x-3cos x)dx$
⑥$\int \frac{cos^3x+5}{cos^2x}dx$
⑦$\int \frac{1}{tan^2x}dx$
タクミと貫太郎 微分を語ろう!「は(速さ)じ(時間)き(距離)「はじき」を使うとゲロが出る」

単元:
#数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
この動画を見る
微分についての解説動画
は(速さ)じ(時間)き(距離)「はじき」
【数Ⅲ-133】不定積分①(準備運動編)

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分①・準備運動編)
Q.次の不定積分を求めよ
①$\int 5x^2dx$
➁$\int (8x^3+x^2-6x+5)dx$
③$\int (\frac{1}{x^3}-\sqrt{x})dx$
④$\int (\frac{6x^4-3}{x^2})dx$
⑤$\int \frac{(x-1)^2}{x^3}dx$
⑥$\int (\frac{x-2}{x})^2dx$
この動画を見る
数Ⅲ(不定積分①・準備運動編)
Q.次の不定積分を求めよ
①$\int 5x^2dx$
➁$\int (8x^3+x^2-6x+5)dx$
③$\int (\frac{1}{x^3}-\sqrt{x})dx$
④$\int (\frac{6x^4-3}{x^2})dx$
⑤$\int \frac{(x-1)^2}{x^3}dx$
⑥$\int (\frac{x-2}{x})^2dx$
【数Ⅲ-132】近似式

単元:
#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(近似式)
$x≒0$のとき、次の関数について1次の近似式を求めよ。
①$\sqrt{1+3x}$
➁$\log (e+x)$
③$sin31°$の近似値を、1次の近似式を用いて少数第3位まで求めよ。
ただし$\sqrt{3}=1.73,\pi=3.14$とする。
この動画を見る
数Ⅲ(近似式)
$x≒0$のとき、次の関数について1次の近似式を求めよ。
①$\sqrt{1+3x}$
➁$\log (e+x)$
③$sin31°$の近似値を、1次の近似式を用いて少数第3位まで求めよ。
ただし$\sqrt{3}=1.73,\pi=3.14$とする。
【数Ⅲ-131】いろいろな量の変化率

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(いろいろな量の変化率)
①毎秒$3cm^2$の割合で表面積が増加している球がある。
この球の半径が$4cm$になった瞬間における体積の変化率を求めよ。
②右の図のような直円錐の容器に、毎秒$3cm^3$の割合で水を注ぐ。
水面の高さが$6cm$になったときの水面の上昇する速度を求めよ。
この動画を見る
数Ⅲ(いろいろな量の変化率)
①毎秒$3cm^2$の割合で表面積が増加している球がある。
この球の半径が$4cm$になった瞬間における体積の変化率を求めよ。
②右の図のような直円錐の容器に、毎秒$3cm^3$の割合で水を注ぐ。
水面の高さが$6cm$になったときの水面の上昇する速度を求めよ。
【数Ⅲ-130】速度と加速度③(円運動編)

単元:
#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度③・円運動編)
$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。
①速度$\vec{v},$加速度$\vec{a}$を求めよ。
②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
この動画を見る
数Ⅲ(速度と加速度③・円運動編)
$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。
①速度$\vec{v},$加速度$\vec{a}$を求めよ。
②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
【数Ⅲ-129】速度と加速度②(平面上の点の運動編)

単元:
#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度➁・平面上の点の運動編)
①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
この動画を見る
数Ⅲ(速度と加速度➁・平面上の点の運動編)
①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
【数Ⅲ-128】速度と加速度①(直線上の点の運動編)

単元:
#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度①・直線上の運動編)
地上から真上に投げ上げた物体の時刻$t$における高さが$h(t)=40t-5t^2$で表されるとき、次の問いに答えよ。
①速度$v(t)$、加速度$a(t)$を求めよ。
②最高到達点の高さを求めよ。
③地上に落下するときの速度を求めよ。
この動画を見る
数Ⅲ(速度と加速度①・直線上の運動編)
地上から真上に投げ上げた物体の時刻$t$における高さが$h(t)=40t-5t^2$で表されるとき、次の問いに答えよ。
①速度$v(t)$、加速度$a(t)$を求めよ。
②最高到達点の高さを求めよ。
③地上に落下するときの速度を求めよ。
【数Ⅲ-127】微分の方程式への応用

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の方程式への応用)
$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。
①$e^x=x+a$
②$2x^3-ax^2+1$
この動画を見る
数Ⅲ(微分の方程式への応用)
$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。
①$e^x=x+a$
②$2x^3-ax^2+1$
【数Ⅲ-126】微分の不等式への応用②

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)
$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
この動画を見る
数Ⅲ(微分の不等式への応用➁)
$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
【数Ⅲ-125】微分の不等式への応用①

単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
この動画を見る
数Ⅲ(微分の不等式への応用①)
①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ
➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ