数C
数学「大学入試良問集」【14−9ベクトルと反転】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xy$平面において、原点$O$を通る半径$r(r \gt 0)$の円を$C$とし、その中心を$A$とする。
$O$を除く$C$上の点$P$に対し、次の2つの条件$(a),(b)$で定まる点$Q$を考える。
(a)$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の向きが同じ。
(b)$|\overrightarrow{ OP }||\overrightarrow{ OQ }|=1$
以下の問いに答えよ。
(1)
点$P$が$O$を除く$C$上を動くとき、点$Q$は$\overrightarrow{ OA }$に直交する直線状を動くことを示せ。
(2)
(1)の直線を$l$とする。
$l$が$C$と2点で交わるとき、$r$のとり得る値の範囲を求めよ。
この動画を見る
$xy$平面において、原点$O$を通る半径$r(r \gt 0)$の円を$C$とし、その中心を$A$とする。
$O$を除く$C$上の点$P$に対し、次の2つの条件$(a),(b)$で定まる点$Q$を考える。
(a)$\overrightarrow{ OP }$と$\overrightarrow{ OQ }$の向きが同じ。
(b)$|\overrightarrow{ OP }||\overrightarrow{ OQ }|=1$
以下の問いに答えよ。
(1)
点$P$が$O$を除く$C$上を動くとき、点$Q$は$\overrightarrow{ OA }$に直交する直線状を動くことを示せ。
(2)
(1)の直線を$l$とする。
$l$が$C$と2点で交わるとき、$r$のとり得る値の範囲を求めよ。
数学「大学入試良問集」【14−8ベクトルと軌跡と等式・不等式】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
この動画を見る
平面上において同一直線上にない3点$A,B,C$があるとき、次の各問いに対して、それぞれの式をみたす点$P$の集合を求めよ。
(1)$\overrightarrow{ AP }+\overrightarrow{ BP }+\overrightarrow{ CP }=\overrightarrow{ AC }$
(2)$\overrightarrow{ AB }・\overrightarrow{ AP }=\overrightarrow{ AB }・\overrightarrow{ AB }$
(3)$\overrightarrow{ AB }・\overrightarrow{ AC }+\overrightarrow{ AP }・\overrightarrow{ AP } \leqq \overrightarrow{ AB }・\overrightarrow{ AP }+\overrightarrow{ AC }・\overrightarrow{ AP }$
福田のわかった数学〜高校3年生理系085〜グラフを描こう(7)媒介変数表示のグラフ
単元:
#平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$グラフを描こう(7)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
のグラフを描け。
凹凸は調べなくてよい。
この動画を見る
数学$\textrm{III}$グラフを描こう(7)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1\\
y=2-t-t^2
\end{array}
\right.
(-2 \leqq t \leqq 1)
\end{eqnarray}$
のグラフを描け。
凹凸は調べなくてよい。
数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
この動画を見る
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。
(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
(a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
(b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$
(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
この動画を見る
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。
(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
(a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
(b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$
(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。
2021立教大学経済学部過去問
福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。
2021立教大学理工学部過去問
【数B】ベクトル:直線と平面のなす角
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
平面と直線のなす角を求めます!
この動画を見る
平面と直線のなす角を求めます!
【数C】ベクトル:直線と平面のなす角
数学「大学入試良問集」【14−4内心と平面ベクトルと面積の問題】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。
(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
この動画を見る
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。
(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。
(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。
(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。
(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。
(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
福田の数学〜立教大学2021年理学部第1問(1)〜正六角形の対角線ベクトルの内積
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。
2021立教大学理学部過去問
この動画を見る
${\Large\boxed{1}}$(1)1辺の長さが1の正六角形の頂点を反時計回りにA,B,C,D,E,Fとする。
このとき、2つのベクトル$\overrightarrow{ AC },\overrightarrow{ AD }$の内積$\overrightarrow{ AC }・\overrightarrow{ AD }$の値は$\boxed{\ \ ア\ \ }$である。
2021立教大学理学部過去問
福田の数学〜明治大学2021年理工学部第3問〜単位ベクトルと関数の増減
単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ Oを原点とする座標平面上の曲線$y=\log x$を$C$とする。正の実数$t$に対し、
曲線C上の点$P(t,\log t)$におけるCの法線Lの傾きは$\boxed{\ \ か\ \ }$である。Lに平行な
単位ベクトル$\overrightarrow{ n }$で、その$x$成分が正であるものは$\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })$である。
さらに、$r$を正の定数とし、点Qを$\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }$により定めると、
Qの座標は$(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })$となる。ここで点Qのx座標とy座標をtの関数と見て、
それぞれ$X(t),\ Y(t)$とおくと$X(t),\ Y(t)$の導関数を成分とするベクトル$(X'(t),\ Y'(t))$
はrによらないベクトル$(1,\ \boxed{\ \ さ\ \ })$と平行であるか、零ベクトルである。
定数$r$の取り方によって関数$X(t)$の増減の様子は変わる。$X(t)$が区間$t \gt 0$で
常に増加するようなrの値の範囲は$\boxed{\ \ し\ \ }$である。また、$r=2\sqrt2$のとき、$X(t)$は
区間$\boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }$で減少し、区間$0 \lt t \leqq \boxed{\ \ す\ \ }$と区間$t \geqq \boxed{\ \ せ\ \ }$で増加する。
2021明治大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ Oを原点とする座標平面上の曲線$y=\log x$を$C$とする。正の実数$t$に対し、
曲線C上の点$P(t,\log t)$におけるCの法線Lの傾きは$\boxed{\ \ か\ \ }$である。Lに平行な
単位ベクトル$\overrightarrow{ n }$で、その$x$成分が正であるものは$\overrightarrow{ n }=(\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ })$である。
さらに、$r$を正の定数とし、点Qを$\overrightarrow{ OQ }=\overrightarrow{ OP }+r\ \overrightarrow{ n }$により定めると、
Qの座標は$(\boxed{\ \ け\ \ },\ \boxed{\ \ こ\ \ })$となる。ここで点Qのx座標とy座標をtの関数と見て、
それぞれ$X(t),\ Y(t)$とおくと$X(t),\ Y(t)$の導関数を成分とするベクトル$(X'(t),\ Y'(t))$
はrによらないベクトル$(1,\ \boxed{\ \ さ\ \ })$と平行であるか、零ベクトルである。
定数$r$の取り方によって関数$X(t)$の増減の様子は変わる。$X(t)$が区間$t \gt 0$で
常に増加するようなrの値の範囲は$\boxed{\ \ し\ \ }$である。また、$r=2\sqrt2$のとき、$X(t)$は
区間$\boxed{\ \ す\ \ } \leqq t \leqq \boxed{\ \ せ\ \ }$で減少し、区間$0 \lt t \leqq \boxed{\ \ す\ \ }$と区間$t \geqq \boxed{\ \ せ\ \ }$で増加する。
2021明治大学理工学部過去問
数学「大学入試良問集」【14−2 円と直線と平面ベクトルと。】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#立命館大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$O$を中心とする円に内接する$\triangle ABC$があり、$AB=2,\ AC=3,\ BC=\sqrt{ 7 }$とする。
点$B$を通り直線$AC$の平行な直線と円$O$との交点のうち、点$B$と異なる点を$D$、直線$AO$と直線$CD$の交点を$E$とする。
(1)内積$\overrightarrow{ AB }・\overrightarrow{ AO },\overrightarrow{ AC }・\overrightarrow{ AO }$を求めよ。
(2)$\overrightarrow{ AO }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(3)$\overrightarrow{ AD }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(4)$CE:DE$を求めよ。
この動画を見る
点$O$を中心とする円に内接する$\triangle ABC$があり、$AB=2,\ AC=3,\ BC=\sqrt{ 7 }$とする。
点$B$を通り直線$AC$の平行な直線と円$O$との交点のうち、点$B$と異なる点を$D$、直線$AO$と直線$CD$の交点を$E$とする。
(1)内積$\overrightarrow{ AB }・\overrightarrow{ AO },\overrightarrow{ AC }・\overrightarrow{ AO }$を求めよ。
(2)$\overrightarrow{ AO }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(3)$\overrightarrow{ AD }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(4)$CE:DE$を求めよ。
数学「大学入試良問集」【14−1 平面ベクトルと一次独立の様々な解法】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$を$3:2$に内部する点を$C$、辺$OB$を$3:4$に内分する点を$D$とする。
線分$AD$と線分$BC$との交点を$P$とする。
また、$\triangle OPA,\triangle PDB$の面積をそれぞれ$S_1,S_2$とする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
(2)$S_1:S_2$を求めよ。
この動画を見る
$\triangle OAB$を$3:2$に内部する点を$C$、辺$OB$を$3:4$に内分する点を$D$とする。
線分$AD$と線分$BC$との交点を$P$とする。
また、$\triangle OPA,\triangle PDB$の面積をそれぞれ$S_1,S_2$とする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表せ。
(2)$S_1:S_2$を求めよ。
福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形
単元:
#数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)複素数$z$と正の実数rは、等式
$z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi) \ldots(*)$
を満たしている。ただし、$i$は虚数単位である。
$(\textrm{i})z$の偏角$\thetaを0 \leqq \theta \lt 2\pi$の範囲にとるとき、$\theta$のとりうる値の
うち最小のものは$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi$であり、最大のものは$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi$である。
$(\textrm{ii})$等式(*)と等式
$|z-i|=1$
が共に成り立つとき、$r$の値は$r=\boxed{\ \ ナ\ \ }$または$r=\boxed{\ \ ニ\ \ }$である。
2021明治大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$(3)複素数$z$と正の実数rは、等式
$z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi) \ldots(*)$
を満たしている。ただし、$i$は虚数単位である。
$(\textrm{i})z$の偏角$\thetaを0 \leqq \theta \lt 2\pi$の範囲にとるとき、$\theta$のとりうる値の
うち最小のものは$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi$であり、最大のものは$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi$である。
$(\textrm{ii})$等式(*)と等式
$|z-i|=1$
が共に成り立つとき、$r$の値は$r=\boxed{\ \ ナ\ \ }$または$r=\boxed{\ \ ニ\ \ }$である。
2021明治大学理工学部過去問
福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積
単元:
#平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、
$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。
$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群
$⓪\sqrt k ①k ②k^2 ③\frac{\sqrt 2}{2} ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2} ⑥\frac{k}{3} ⑦\frac{k^2}{4} ⑧\frac{k^2}{5} ⑨\frac{k^2}{6}$
$\boxed{\ \ エ\ \ }$の解答群
$⓪x+\frac{k}{2} ①x+\frac{k}{4} ②-x+\frac{k}{2} ③-x+\frac{k}{4} ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4} ⑥2x-\frac{3k}{4} ⑦-2x+\frac{k}{2} ⑧-2x+\frac{k}{4} ⑨-2x+\frac{3k}{4}$
2021明治大学全統過去問
この動画を見る
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、
$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。
$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群
$⓪\sqrt k ①k ②k^2 ③\frac{\sqrt 2}{2} ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2} ⑥\frac{k}{3} ⑦\frac{k^2}{4} ⑧\frac{k^2}{5} ⑨\frac{k^2}{6}$
$\boxed{\ \ エ\ \ }$の解答群
$⓪x+\frac{k}{2} ①x+\frac{k}{4} ②-x+\frac{k}{2} ③-x+\frac{k}{4} ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4} ⑥2x-\frac{3k}{4} ⑦-2x+\frac{k}{2} ⑧-2x+\frac{k}{4} ⑨-2x+\frac{3k}{4}$
2021明治大学全統過去問
【数B】ベクトル:直線と平面の交点
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
直線$\dfrac{x-2}{4}=\dfrac{y-1}{-1}=z-3$と平面$x-4y+z=0$の交点を求めよ
この動画を見る
直線$\dfrac{x-2}{4}=\dfrac{y-1}{-1}=z-3$と平面$x-4y+z=0$の交点を求めよ
【数B】ベクトル:二点を通る直線・空間版
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
$A(-2,1,-1)とB(1,3,2)$を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る
$A(-2,1,-1)とB(1,3,2)$を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
【数C】ベクトル:直線と平面の交点
【数C】ベクトル:二点を通る直線・空間版
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
この動画を見る
A(-2,1,-1)とB(1,3,2)を通る直線の方程式を求めよ。変数x,y,zを用いて表せ。
福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件
単元:
#数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。
2021明治大学全統過去問
この動画を見る
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。
2021明治大学全統過去問
福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面
単元:
#平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。
2021明治大学全統過去問
この動画を見る
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。
2021明治大学全統過去問
福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積
単元:
#微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、
直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。
$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi ①\frac{\sqrt3}{36}\pi ②\frac{\sqrt3}{72}\pi ③\frac{1}{6}+\frac{\sqrt3}{36}\pi ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、
直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。
$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi ①\frac{\sqrt3}{36}\pi ②\frac{\sqrt3}{72}\pi ③\frac{1}{6}+\frac{\sqrt3}{36}\pi ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル
単元:
#数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。
(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。
(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。
(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。
2021明治大学全統過去問
この動画を見る
${\Large\boxed{3}}$辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。
・点Oは辺AB上にある。
・点Pは正六角形ABCDFの内部にある。
・点Qは線分CP上にある。
・三角形OCPと三角形OQFは共に正三角形である。
(1)四角形OQPFに着目すると、$\angle OFQ=\angle OPQ$より、
OQPFは円に内接する四角形なので、$\angle OPF=\boxed{\ \ アイ\ \ }°$とわかる。
(2)$AB //FC$に着目すると、$\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}$である。$OC//FP$
であることに着目すると、$\triangle OCP=\triangle OCF$なので、$OC^2=\boxed{\ \ オ\ \ }$とわかる。
また、$OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }$である。
(3)$OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}$であり、
$\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }$
とおくと、$t$は$t^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0$を満たす。
2021明治大学全統過去問
福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(2)〜位置ベクトルと面積比
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)三角形ABC内に点Pがあり、$3\overrightarrow{ PA }+5\ \overrightarrow{ PB }+7\ \overrightarrow{ PC }=\overrightarrow{ 0 }$のとき、
$\overrightarrow{ AP }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケコ\ \ }}\overrightarrow{ AC }$
となるので、$\triangle PAB :\triangle PBC :\triangle PCA=\boxed{\ \ サ\ \ }$である。
$\boxed{\ \ サ\ \ }$の解答群
$⓪1:1:1 ①3:5:7 ②5:7:3 ③7:3:5 ④9:25:49$
$⑤25:49:9 ⑥49:9:25 ⑦\frac{1}{3}:\frac{1}{5}:\frac{1}{7} ⑧\frac{1}{5}:\frac{1}{7}:\frac{1}{3} ⑨\frac{1}{7}:\frac{1}{3}:\frac{1}{5}$
2021明治大学全統過去問
この動画を見る
${\Large\boxed{1}}$(2)三角形ABC内に点Pがあり、$3\overrightarrow{ PA }+5\ \overrightarrow{ PB }+7\ \overrightarrow{ PC }=\overrightarrow{ 0 }$のとき、
$\overrightarrow{ AP }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケコ\ \ }}\overrightarrow{ AC }$
となるので、$\triangle PAB :\triangle PBC :\triangle PCA=\boxed{\ \ サ\ \ }$である。
$\boxed{\ \ サ\ \ }$の解答群
$⓪1:1:1 ①3:5:7 ②5:7:3 ③7:3:5 ④9:25:49$
$⑤25:49:9 ⑥49:9:25 ⑦\frac{1}{3}:\frac{1}{5}:\frac{1}{7} ⑧\frac{1}{5}:\frac{1}{7}:\frac{1}{3} ⑨\frac{1}{7}:\frac{1}{3}:\frac{1}{5}$
2021明治大学全統過去問
【数B】平面ベクトル:角の二等分線上の位置ベクトル(類神戸大学)
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
平面上に原点Oから出る、相異なる2本の半直線$OX、OY(\angle XOY\lt 180°)$上にそれぞれOと異なる2点A,Bをとる。
(1)$a=OA, b=OB$とする。点Cが$∠XOY$の二等分線上にあるとき、OCを実数$t(t\geqq 0)$とa, bで表せ。
(2)$∠XOY$の二等分線と$∠XAB$の二等分線の交点をPとする。$OA=2, B=3, AB=4$のとき、OPをa, bで表せ。
この動画を見る
平面上に原点Oから出る、相異なる2本の半直線$OX、OY(\angle XOY\lt 180°)$上にそれぞれOと異なる2点A,Bをとる。
(1)$a=OA, b=OB$とする。点Cが$∠XOY$の二等分線上にあるとき、OCを実数$t(t\geqq 0)$とa, bで表せ。
(2)$∠XOY$の二等分線と$∠XAB$の二等分線の交点をPとする。$OA=2, B=3, AB=4$のとき、OPをa, bで表せ。
福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。
(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。
(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。
2021青山学院大学理工学部過去問
この動画を見る
${\Large\boxed{4}}$複素数平面上の点zが$z+\bar{ z }=2$を満たしながら動くとき、以下の問いに答えよ。
(1)点z全体が描く図形を複素数平面上に図示せよ。
(2)$w=(2+i)z$ で定まる点w全体が描く図形を調べよう。
$(\textrm{a})w$の実部をu、虚部をvとして$w=u+vi$と表すとき、u,vが満たす方程式
を求めよ。
$(\textrm{b})$点w全体が描く図形を複素数平面上に図示せよ。
(3)$w=z^2$で定まる点w全体が描く図形を複素数平面上に図示せよ。
2021青山学院大学理工学部過去問
福田の数学〜青山学院大学2021年理工学部第2問〜平面ベクトルとベクトル方程式
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。
(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$
(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$
(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。
2021青山学院大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$ 平面上に3点O,A,Bがあり、
$|\overrightarrow{ OA }|=|\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=|2\sqrt2\overrightarrow{ OA }+\overrightarrow{ OB }|=1$
を満たしている。
(1)$|\overrightarrow{ OB }|=\sqrt{\boxed{\ \ ア\ \ }}$
(2)$\cos\angle AOB=\frac{\boxed{\ \ イウ\ \ }\sqrt{\boxed{\ \ エオ\ \ }}}{\boxed{\ \ カキ\ \ }}$
(3)実数s,tが
$s \geqq 0,\ t \geqq 0,\ s+2t \leqq 1$
を満たしながら変化するとき、
$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
で定まる点Pの存在する範囲の面積は$\frac{\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$
である。
2021青山学院大学理工学部過去問
福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問