数学(高校生) - 質問解決D.B.(データベース) - Page 10

数学(高校生)

【数学】京大に受かりたいなら覚えておくべき解法3選

アイキャッチ画像
単元: #その他#勉強法#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「京大に受かりたいなら覚えておくべき数学対策3選」についてお話しています。
この動画を見る 

7月は共通テストの過去問を何年分解くべきなのか?そして7月は絶対やって欲しいことが。。。

アイキャッチ画像
単元: #センター試験・共通テスト関連#英語(高校生)#共通テスト#共通テスト・センター試験#共通テスト#理科(高校生)#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
7月は共通テストの過去問を何年分解くべきなのか解説します。
この動画を見る 

大学入試問題#863「ごちゃごちゃしとる」 #産業医科大学(2012) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt[ 3 ]{ (n^3-n^2)^2 }-2n\sqrt[ 3 ]{ n^3-n^2 }+n^2$

出典:2012年産業医科大学
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 実数$a$に対して$f(a)$=$\displaystyle\frac{1}{2}(2^a-2^{-a})$とおく。また、$A$=$2^a$とする。
(1)等式$\displaystyle\left(A-\frac{1}{A}\right)^3$=$\displaystyle\boxed{\ \ ア\ \ }\left(A-\frac{1}{A}\right)^3$-$\displaystyle\boxed{\ \ イ\ \ }\left(A-\frac{1}{A}\right)$ より、実数$a$に対して
$\left\{f(a)\right\}^3$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}f(3a)$-$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}f(a)$ ...①が成り立つ。
(2)実数$a$,$b$に対して$f(a)$=$b$が成り立つならば、$A$=$2^a$は2次方程式
$A^2$-$\boxed{\ \ キ\ \ }bA$-$\boxed{\ \ ク\ \ }$=0
を満たす。$2^a$>0より、$a$は$b$を用いて
$a$=$\log_2\left(\boxed{\ \ ケ\ \ }b+\sqrt{b^2+\boxed{\ \ コ\ \ }}\right)$ ...②
と表せる。つまり、任意の実数bに対して$f(a)$=$b$となる実数$a$が、ただ1つに定まる。
以下、数列$\left\{a_n\right\}$に対して$f(a_n)$=$b_n$ ($n$=1,2,3,...)で定まる数列$\left\{b_n\right\}$が、関係式
$4b_{n+1}^3$+$3b_{n+1}$-$b_n$=0 ($n$=1,2,3,...) ...③
を満たすとする。
(3)①と③から$f\left(\boxed{\ \ サ\ \ }a_{n+1}\right)$=$f(a_n)$ ($n$=1,2,3,...)となるので、(2)より、
$a_n$=$\displaystyle\frac{a_1}{\boxed{\ \ シ\ \ }^{n-p}}$ ($n$=1,2,3,...)が得られる。ここで、$p$=$\boxed{\ \ ス\ \ }$である。
(4)$n$≧2に対して、$S_n$=$\displaystyle\sum_{k=2}^n3^{k-1}b_k^3$ とおく。$c_n$=$3^nb_n$ ($n$=1,2,3,...)で定まる数列$\left\{c_n\right\}$の階差数列を用いると、③より、
$S_n$=$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}b_1$-$\frac{\boxed{\ \ タ\ \ }^n}{\boxed{\ \ チ\ \ }}b_n$ ($n$=2,3,4,...)
となる。ゆえに、$b_1$=$\displaystyle\frac{4}{3}S_5$-108 が成り立つならば$a_1$=$\boxed{\ \ ツテト\ \ }\log_2\boxed{\ \ ナ\ \ }$ である。
この動画を見る 

これできる?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
※問題文は動画内参照
この動画を見る 

福田のおもしろ数学179〜文字係数の1次不等式の解

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の不等式を解いてください。
$ax$>$b$
この動画を見る 

大学入試問題#862「一言、よくある良問」 #横浜国立大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} x^3\sqrt{ 4-x^2 } dx$

出典:横浜国立大学
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第2問〜確率の基本性質と非復元抽出の条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 袋の中に、1から9までの番号を重複なく1つずつ記入したカードが9枚入っている。A,B,C,Dの4人のうちDがさいころを投げて、1の目が出たらAが、2または3の目が出たらBが、その他の目が出たらCが、袋の中からカードを1枚引き、カードに記入された番号を記録することを試行という。ただし、1度引いたカードは袋に戻さない。この試行を3回続けて行う。また、1回目の試行前のA,B,Cの点数をそれぞれ0としたうえで、以下の(a),(b)に従い、各回の試行後のA,B,Cの点数を定める。
(a)各回の試行においてカードを引いた人は、その回の試行前の自分の点数に、その回の試行で記録した番号を加え、試行後の点数とする。
(b)各回の試行においてカードを引いていない人は、その回の試行前の自分の点数を、そのまま試行後の点数とする。
(1)1回目の試行後、Bの点数が3の倍数となる確率は$\frac{\boxed{ア}}{\boxed{イ}}$である。ただし、0はすべての整数の倍数である。
(2)2回目の試行後、A,B,Cのうち、1人だけの点数が0である確率は$\frac{\boxed{ウエ}}{\boxed{オカ}}$である。
(3)2回目の試行後のAの点数が5以上となる確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(4)2回目の試行後のAの点数が5以上であるとき、3回目の試行後のA,B,Cの点数がすべて5以上である条件付き確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
この動画を見る 

【別解の考え方自身は超大切…!】因数分解:法政大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学高等学校

$(a^2+2a)^2-2(a^2+2a)-3$
を因数分解しなさい。
この動画を見る 

福田のおもしろ数学178〜ある等式を満たす100個の変数のうちのひとつの変数の最大値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{a_1^2+a_2^2+...+a_{100}^2}{a_1+a_2+...+a_{100}}$=100 を満たす実数$a_1$の最大値を求めてください。
この動画を見る 

大学入試問題#861「初見では苦しいか!?」 #学習院大学(2017) 視聴者の僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,b \gt 0$
$\displaystyle \lim_{ x \to \infty } x \sin(\sqrt{ a^2x^2+b }-ax)$

出典:2017年学習大学
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(2)〜三角関数への置き換えによる分数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)$\theta$は|$\theta$|<$\displaystyle\frac{\pi}{2}$の範囲の定数とする。$x$=$\tan\theta$とおくと、$\displaystyle\frac{x}{x^2+1}$=$\frac{\boxed{ク}}{\boxed{ケ}}\sin2\theta$かつ$\displaystyle\frac{1}{x^2+1}$=$\frac{\boxed{コ}}{\boxed{サ}}(\cos2\theta$+1)であるので、$\displaystyle y=\frac{x^2+3x+5}{x^2+1}$とすると、
$\displaystyle y=\frac{\boxed{シ}}{\boxed{ス}}\sin(2\theta+\alpha)$+$\boxed{セ}$
と表せる。ただし、$\cos\alpha$=$\frac{\boxed{ソ}}{\boxed{タ}}$, $\sin\alpha$=$\frac{\boxed{チ}}{\boxed{ツ}}$である。また、|$x$|≦1に対応する$\theta$の範囲が|$\theta$|≦$\displaystyle\frac{\pi}{\boxed{テ}}$であることに注意すると、|$x$|≦1における$y$の取りうる値の最大値は$\frac{\boxed{トナ}}{\boxed{ニ}}$、最小値は$\frac{\boxed{ヌ}}{\boxed{ネ}}$ である。
この動画を見る 

【数学受験組の実力チェック】三平方の定理と二次方程式の解の公式を証明せよ【東大・早稲田・国立志望】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#三平方の定理#2次方程式と2次不等式#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
数学系YouTuberの鈴木貫太郎先生が「三平方の定理」と「二次方程式の解の公式」を証明します。

考え方を学んで、復習の参考にしましょう!
この動画を見る 

【高校数学】ベクトルにおける点の存在範囲のコツ【数学のコツ】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルにおける点の存在範囲のコツを解説していきます.
この動画を見る 

視聴者の僚太さんの難易度高めの積分です。大事な感覚が盛り込まれてます。

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{(1+x^2)\sqrt{ 1+x^2 }}$
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第1問(1)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$p$を実数とする。$x$の2次方程式$x^2$-($p$-9)$x$-$p$+1=0 の解は整数$m$<0<$n$が成り立つとする。このとき$mn$+$m$+$n$=$\boxed{\ \ アイ\ \ }$なので、$m$=$\boxed{\ \ ウエ\ \ }$, $n$=$\boxed{\ \ オ\ \ }$, $p$=$\boxed{\ \ カキ\ \ }$ である。
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積$S$を求めよ。
$y=x^2-3x,y=2x$
この動画を見る 

福田のおもしろ数学176〜ルートが無限に重なる等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{x\sqrt{x\sqrt{...}}}$=$x$ を証明してください。ただし$x$は正の実数とする。
この動画を見る 

大学入試問題#860「これ、ええ問題」 #立教大学 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin(1-\cos x)}{x^2}$

出典:立教大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
この動画を見る 

福田のおもしろ数学175〜0から10^nまでの数に現れる各桁の数字の総和を求める

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
0から$10^n$までに現れる各桁の数字の総和を求めてください。($10^n$も含む)
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第3問〜四面体の切断面の面積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ -1,0,1以外のすべての実数$x$に対して定義された関数
$f(x)$=$\displaystyle\frac{1}{3x(x^2-1)}$
を考える。
(1)$f(x)$は$x$=$\boxed{\ \ (あ)\ \ }$において極小値$\boxed{\ \ (い)\ \ }$をとり、$x$=$\boxed{\ \ (う)\ \ }$において極大値$\boxed{\ \ (え)\ \ }$をとる。
(2)曲線$y$=$f(x)$の概形を描きなさい。
(3)直線$y$=$mx$が曲線$y$=$f(x)$とちょうど4点で交わるとき、定数$m$の値の範囲は$\boxed{\ \ (お)\ \ }$である。
(4)$a$=$\boxed{\ \ (か)\ \ }$, $b$=$\boxed{\ \ (き)\ \ }$, $c$=$\boxed{\ \ (く)\ \ }$とすると、つぎの恒等式が成り立つ。
$f(x)$=$\displaystyle\frac{a}{x-1}$+$\displaystyle\frac{b}{x}$+$\displaystyle\frac{c}{x+1}$
(5)直線$y$=$mx$ (ただし$m$>0)が曲線$y$=$f(x)$と第1象限において交わる点Pの$x$座標を$x(m)$とし、
$A(m)$=$\displaystyle\lim_{T \to \infty}\int_{x(m)}^Tf(x)dx$
とおいて、$A(m)$を$m$の式で表すと、$A(m)$=$\boxed{\ \ (け)\ \ }$となる。また、原点をO、$\left(x(m),0\right)$を座標とする点をQとし、三角形OPQの面積を$B(m)$とおくと$\displaystyle\lim_{m \to +0}\frac{A(m)}{B(m)}$=$\boxed{\ \ (こ)\ \ }$ となる。
この動画を見る 

福田のおもしろ数学174〜ルートの付いた数値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\left(\frac{\sqrt{39}+\sqrt 3}{\sqrt{12}}\right)^7$ を計算してください。
この動画を見る 

大学入試問題#862「計算力と根性!」 #京都大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=3 \\
a_n=\displaystyle \frac{S_n}{n}+(n-1)・2^n
\end{array}
\right.
\end{eqnarray}$
を満たすような数列$\{a_n\}$の一般項を求めよ

出典:2023年京都大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第2問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 袋が2つ(袋1と袋2)および赤玉2個、白玉4個が用意されている。それぞれの袋に玉が3個ずつ入った状態として、次の3つがあり得る。
状態A:袋1に入っている赤玉が0個である状態
状態B:袋1に入っている赤玉が1個である状態
状態C:袋1に入っている赤玉が2個である状態
上記の各状態に対して、次の2段階からなる操作Tを考える。
操作T:袋1から玉を1個無作為に取り出し、それを袋2に入れる。次に、袋2から玉を1個無作為に取り出し、それを袋1に入れる。
(1)X,YをそれぞれA,B,Cのいずれかとする。状態Xに対し操作Tを1回施した結果、状態Yになる確率をP(X→Y)で表す。このとき、
P(A→A)=$\boxed{\ \ (あ)\ \ }$, P(A→B)=$\boxed{\ \ (い)\ \ }$, P(B→A)=$\boxed{\ \ (う)\ \ }$,
P(B→B)=$\boxed{\ \ (え)\ \ }$, P(C→A)=$\boxed{\ \ (お)\ \ }$, P(C→B)=$\boxed{\ \ (か)\ \ }$ である。
(2)以下、$n$を自然数とし、状態Bから始めて操作Tを繰り返し施す。操作Tを$n$回施し終えたとき、状態Aである確率を$a_n$、状態Bである確率を$b_n$、状態Cである確率を$c_n$とする。$n$≧2 とするとき、$a_n$,$b_n$,$c_n$と$a_{n-1}$,$b_{n-1}$,$c_{n-1}$の間には次の関係式が成り立つ。
$\left\{\begin{array}{1}
a_n=\boxed{\ \ (あ)\ \ }a_{n-1}+\boxed{\ \ (う)\ \ }b_{n-1}+\boxed{\ \ (お)\ \ }c_{n-1}\\
b_n=\boxed{\ \ (い)\ \ }a_{n-1}+\boxed{\ \ (え)\ \ }b_{n-1}+\boxed{\ \ (か)\ \ }c_{n-1}\\
\end{array}\right.$
したがって$b_n$と$b_{n-1}$の間には次の関係式が成り立つことが分かる。
$b_n$=$\boxed{\ \ (き)\ \ }b_{n-1}$+$\boxed{\ \ (く)\ \ }$
これより、$n$≧1 に対して$b_n$を$n$の式で表すと
$b_n$=$\boxed{\ \ (け)\ \ }$+$\boxed{\ \ (こ)\ \ }(\boxed{\ \ (さ)\ \ })^n$
となる。さらに$d_n$=$\displaystyle\frac{a_n}{(\boxed{\ \ (あ)\ \ })^n}$とおくとき、$d_n$を$n$の式で表すと
$d_n$=$\boxed{\ \ (し)\ \ }\left\{(\boxed{\ \ (す)\ \ })^n-(\boxed{\ \ (せ)\ \ })^n\right\}$
となる。
この動画を見る 

福田のおもしろ数学173〜多重のルートで示される数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#鹿児島県公立高校入試
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{...}}}}$ を求めなさい。
この動画を見る 

大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(3)〜三角関数の増減とグラフと面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3) 関数$y$=$\cos x\sin 2x$ $\left(0≦x≦\displaystyle\frac{\pi}{2}\right)$の最大値は$\boxed{\ \ (け)\ \ }$である。また、この関数のグラフと$x$軸で囲まれてできる図形の面積は$\boxed{\ \ (こ)\ \ }$である。
この動画を見る 

福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る 

【わかりやすく】同じものを含む順列の求め方を解説!【数学A / 場合の数】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a,a,b,b,b,c,d$の7文字をすべて1列に並べる。
(1)全部で並べ方は何通りあるか。
(2)$c,d$がこの順になる並べ方は何通りあるか。
この動画を見る 
PAGE TOP