数学(高校生)
慶應義塾大(薬)n進法の基本
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\overbrace{210210210・・・・・・210_{(3)} }^{3n桁}$
$3$進法で表記された$210$を繰り返す$3n$桁の数を$十$進法にして$n$の式で表せ.
2021慶應(薬)過去問
この動画を見る
$\overbrace{210210210・・・・・・210_{(3)} }^{3n桁}$
$3$進法で表記された$210$を繰り返す$3n$桁の数を$十$進法にして$n$の式で表せ.
2021慶應(薬)過去問
【数学A】確率『反復試行の確率』
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1枚のコインを6回投げるとき、次の確率を求めよ。
(1)表が4回出る確率
(2)表が5回以上出る確率
(3)表の出る回数が3回以下である確率
この動画を見る
1枚のコインを6回投げるとき、次の確率を求めよ。
(1)表が4回出る確率
(2)表が5回以上出る確率
(3)表の出る回数が3回以下である確率
高校入試 接点の座標を求める
50の18%の暗算仕方
単元:
#算数(中学受験)#計算と数の性質#数学(中学生)#文章題#単位・比と割合・比例・反比例#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
50の18%の暗算仕方 説明動画です
この動画を見る
50の18%の暗算仕方 説明動画です
福田の数学〜慶應義塾大学2021年看護医療学部第1問(1)〜二項定理
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (a+b)^{21}の展開式a^{18}b^3の係数は\ \boxed{\ \ ア\ \ }\ である。\\
\\
\\
\\
(a+b+c)^{21}の展開式におけるa^{12}b^3c^6の係数を求めよ。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (a+b)^{21}の展開式a^{18}b^3の係数は\ \boxed{\ \ ア\ \ }\ である。\\
\\
\\
\\
(a+b+c)^{21}の展開式におけるa^{12}b^3c^6の係数を求めよ。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
福田のわかった数学〜高校1年生043〜三角比の相互関係(2)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係(2)\\
\sin\theta+\cos\theta=\frac{\sqrt3-1}{2} (90° \lt \theta \lt 180°)のとき\\
\sin\theta\cos\theta,\sin^3\theta+\cos^3\theta,\sin\theta-\cos\theta,\\
\tan\theta+\frac{1}{\tan\theta},\tan^2\theta+\frac{1}{\tan^2\theta}の値を求めよ。
\end{eqnarray}
【数Ⅲ】式と曲線:楕円の基礎
立教大 複素数基本
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.
2021立教大過去問
この動画を見る
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.
2021立教大過去問
【数学Ⅰ】2次不等式(解なし、全ての実数など)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の2次不等式を解け。
(1)
$x^2-6x+9 \gt 0$
(2)
$x^2+4x+4 \lt 0$
(3)
$-x^2+2x-1 \leqq 0$
(4)
$x^2+3x+4 \gt 0$
(5)
$-x^2+6x-10 \geqq 0$
この動画を見る
次の2次不等式を解け。
(1)
$x^2-6x+9 \gt 0$
(2)
$x^2+4x+4 \lt 0$
(3)
$-x^2+2x-1 \leqq 0$
(4)
$x^2+3x+4 \gt 0$
(5)
$-x^2+6x-10 \geqq 0$
俺が使った参考書・問題集(数学編):これで京大、受かりました!偏差値84.9の勉強法【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
これで京大、受かりました!
「俺が使った参考書・問題集(数学編)」について紹介しています。
この動画を見る
これで京大、受かりました!
「俺が使った参考書・問題集(数学編)」について紹介しています。
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校3年生理系056〜微分(1)逆関数の微分
単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(1) 逆関数の微分\\
y=\sin x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
の逆関数の導関数を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(1) 逆関数の微分\\
y=\sin x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
の逆関数の導関数を求めよ。
\end{eqnarray}
6乗根をはずせ!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
この動画を見る
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
複雑な平方根の計算
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(\sqrt 5 -2)^{100}(5+2 \sqrt 5)^{100}}{5^{50}}$
関西学院
この動画を見る
$\frac{(\sqrt 5 -2)^{100}(5+2 \sqrt 5)^{100}}{5^{50}}$
関西学院
福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}} 与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、\\
この試行におけるすべての根元事象は同様に確からしいとする。\\
(1)正n角形における前事象をU_nとし、その中で面積が最小の三角形ができる\\
事象をA_nとする。ただし、nはn \geqq 6を満たす自然数とする。\\
(\textrm{i})事象U_6において、事象A_6の確率は\boxed{\ \ ス\ \ }である。\\
(\textrm{ii})事象U_nにおいて、事象A_nの確率をnの式で表すと\boxed{\ \ セ\ \ }であり、\\
この確率が\frac{1}{1070}以下になる最小のnの値は\boxed{\ \ ソ\ \ }である。\\
(\textrm{iii})事象U_n \cap \bar{ A_n }において、面積が最小となる三角形ができる確率をnの式で\\
表すと\boxed{\ \ タ\ \ }である。\\
(2)1辺の長さが\sqrt2である立方体における全事象をVとすると、事象Vに含まれ\\
るすべての三角形の面積の平均値は\boxed{\ \ チ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{2}}} 与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、\\
この試行におけるすべての根元事象は同様に確からしいとする。\\
(1)正n角形における前事象をU_nとし、その中で面積が最小の三角形ができる\\
事象をA_nとする。ただし、nはn \geqq 6を満たす自然数とする。\\
(\textrm{i})事象U_6において、事象A_6の確率は\boxed{\ \ ス\ \ }である。\\
(\textrm{ii})事象U_nにおいて、事象A_nの確率をnの式で表すと\boxed{\ \ セ\ \ }であり、\\
この確率が\frac{1}{1070}以下になる最小のnの値は\boxed{\ \ ソ\ \ }である。\\
(\textrm{iii})事象U_n \cap \bar{ A_n }において、面積が最小となる三角形ができる確率をnの式で\\
表すと\boxed{\ \ タ\ \ }である。\\
(2)1辺の長さが\sqrt2である立方体における全事象をVとすると、事象Vに含まれ\\
るすべての三角形の面積の平均値は\boxed{\ \ チ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2)
単元:
#数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(9) 媒介変数表示(2)\\
tが実数値をとって変化するとき、\\
x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}\\
はどんな曲線を表すか。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 軌跡(9) 媒介変数表示(2)\\
tが実数値をとって変化するとき、\\
x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}\\
はどんな曲線を表すか。
\end{eqnarray}
整式の剰余 すっきり解こう
【数学Ⅰ】2次不等式の解き方(基礎)
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の2次不等式を解け。
(1)$x^2-5x+6 \gt 0$
(2)$2x^2-5x+2 \lt 0$
(3)$x^2-4x-3 \leqq 0$
この動画を見る
次の2次不等式を解け。
(1)$x^2-5x+6 \gt 0$
(2)$2x^2-5x+2 \lt 0$
(3)$x^2-4x-3 \leqq 0$
中学受験 算数 洛南高校附属中学
単元:
#算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校
この動画を見る
$\angle x=?$
*図は動画内参照
洛南高等学校附属中学校
【数学】高校生でもわかる写像の考え方
単元:
#数学検定・数学甲子園・数学オリンピック等#その他#その他#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
高校生でもわかる写像の考え方に関して解説していきます.
この動画を見る
高校生でもわかる写像の考え方に関して解説していきます.
高校入試 整数問題 大阪星光学院
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x+3y+6z=30を満たす自然数(x,y,z)の組は▢組ある
大阪星光学院高等学校
この動画を見る
x+3y+6z=30を満たす自然数(x,y,z)の組は▢組ある
大阪星光学院高等学校
【三角比の基礎はこれだけ!】三角比の基礎を全て解説!【高校数学 数学】
福田の数学〜慶應義塾大学2021年薬学部第1問(7)〜四面体の体積
単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (7)座標空間内に4点A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)がある。\\
この4点を頂点とする四面体ABCDの体積は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (7)座標空間内に4点A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)がある。\\
この4点を頂点とする四面体ABCDの体積は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校3年生理系055〜格子点の個数と極限
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 格子点の個数と極限\\
右図の斜線部分(※動画参照)に含まれる\\
格子点の総数をa_nとする。\\
\lim_{n \to \infty}\frac{a_n}{n^2} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 格子点の個数と極限\\
右図の斜線部分(※動画参照)に含まれる\\
格子点の総数をa_nとする。\\
\lim_{n \to \infty}\frac{a_n}{n^2} を求めよ。
\end{eqnarray}
昭和薬科大 確率基礎
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1~9のカード各1枚入った箱から1枚取り出して記録して戻す.
$n$回の合計が奇数となる確率を求めよ.
2021昭和薬科過去問
この動画を見る
1~9のカード各1枚入った箱から1枚取り出して記録して戻す.
$n$回の合計が奇数となる確率を求めよ.
2021昭和薬科過去問
【よく出る】数学Ⅰ 2次関数の係数の符号決定
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2次関数$y=ax^2+bx+c$のグラフが、図のようになっているとき、次の値は、正、負、$0$のどれであるか。
(1)$a$
(2)$b$
(3)$c$
(4)$b^2-4ac$
(5)$a-b+c$
この動画を見る
2次関数$y=ax^2+bx+c$のグラフが、図のようになっているとき、次の値は、正、負、$0$のどれであるか。
(1)$a$
(2)$b$
(3)$c$
(4)$b^2-4ac$
(5)$a-b+c$
【数Ⅱ】式と証明:二項定理の使い方編
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
①$(3x+1)^5$を展開したときの$x^4$の係数
②$(2-x)^{10}$を展開したときの$x^7$の係数 をそれぞれ求めよ。
この動画を見る
①$(3x+1)^5$を展開したときの$x^4$の係数
②$(2-x)^{10}$を展開したときの$x^7$の係数 をそれぞれ求めよ。
この面積求めよ~対角線が垂直に交わる四角形の面積の求め方~
単元:
#算数(中学受験)#数学(中学生)#中1数学#平面図形#平面図形#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
対角線が垂直に交わる四角形の面積の求め方
この動画を見る
対角線が垂直に交わる四角形の面積の求め方
福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)整数x,yがx \gt 1,y \gt 1,x ≠yを満たし、等式\\
6x^2+13xy+7x+5y^2+7y+2=966\\
を満たすとする。\\
(\textrm{i})6x^2+13xy+7x+5y^2+7y+2を因数分解すると\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})この等式を満たすxとyの組をすべて挙げると(x,y)=\boxed{\ \ サ\ \ }である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (6)整数x,yがx \gt 1,y \gt 1,x ≠yを満たし、等式\\
6x^2+13xy+7x+5y^2+7y+2=966\\
を満たすとする。\\
(\textrm{i})6x^2+13xy+7x+5y^2+7y+2を因数分解すると\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})この等式を満たすxとyの組をすべて挙げると(x,y)=\boxed{\ \ サ\ \ }である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田のわかった数学〜高校1年生042〜三角比の相互関係
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係\\
0° \lt \theta \lt 180°とする。\\
4\cos\theta+2\sin\theta=\sqrt2のとき\\
\tan\theta の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角比の相互関係\\
0° \lt \theta \lt 180°とする。\\
4\cos\theta+2\sin\theta=\sqrt2のとき\\
\tan\theta の値を求めよ。
\end{eqnarray}