数学(高校生)
【数A】整数の性質:φ関数(φ210とφ1050))
福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} a,bを定数とし、関数f(x)=x^2+ax+b とする。方程式f(x)=0の2つの解\alpha,\beta\\
が次式で与えられている。\\
\alpha=\frac{\sin\theta}{1+\cos\theta}, \beta=\frac{\sin\theta}{1-\cos\theta}\\
ここで\thetaは、0 \lt \theta \lt \piの定数である。次の問いに答えよ。\\
(1)a,bを\thetaを用いて表せ。\\
(2)\thetaが0 \lt \theta \piで変化するとき、放物線y=f(x)の頂点の軌跡を求めよ。\\
(3)\int_0^{2\sin\theta}f(x)dx=0 となる\thetaの値を全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} a,bを定数とし、関数f(x)=x^2+ax+b とする。方程式f(x)=0の2つの解\alpha,\beta\\
が次式で与えられている。\\
\alpha=\frac{\sin\theta}{1+\cos\theta}, \beta=\frac{\sin\theta}{1-\cos\theta}\\
ここで\thetaは、0 \lt \theta \lt \piの定数である。次の問いに答えよ。\\
(1)a,bを\thetaを用いて表せ。\\
(2)\thetaが0 \lt \theta \piで変化するとき、放物線y=f(x)の頂点の軌跡を求めよ。\\
(3)\int_0^{2\sin\theta}f(x)dx=0 となる\thetaの値を全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
福田のわかった数学〜高校1年生029〜いろいろなグラフ(3)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(3)\\
0 \leqq x \leqq 16の範囲で、\\
y=x[\sqrt x] のグラフを描け。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(3)\\
0 \leqq x \leqq 16の範囲で、\\
y=x[\sqrt x] のグラフを描け。
\end{eqnarray}
三角形の面積
数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
この動画を見る
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
完全数とは?完全数の作り方を解説【メルセンヌ数】
福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの\\異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、\\
底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、\\
この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さ\\
が1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。\\
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は\\
20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して\\
次の問いに答えよ。\\
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた\\
正三角形の総数を求めよ。\\
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形\\
の総数を求めよ。\\
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形\\
の総数を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 1辺の長さが1の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの\\異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、\\
底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、\\
この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さ\\
が1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。\\
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は\\
20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して\\
次の問いに答えよ。\\
(1)1辺の長さが1の正三角形を5段積んだとき、上向きと下向きとを合わせた\\
正三角形の総数を求めよ。\\
(2)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、上向きの正三角形\\
の総数を求めよ。\\
(3)1辺の長さが1の正三角形をn段(ただしnは自然数)積んだとき、下向きの正三角形\\
の総数を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系028〜極限(28)関数の極限、三角関数の極限(8)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(8)\\
\\
\lim_{x \to 0}(\frac{\sin2x}{2x}-\frac{\sin3x}{3x}) を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(8)\\
\\
\lim_{x \to 0}(\frac{\sin2x}{2x}-\frac{\sin3x}{3x}) を求めよ。
\end{eqnarray}
【数A】整数の性質:慶應義塾大学 1の位の数は?
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
この動画を見る
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
ガウス記号 剰余
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$\left[\dfrac{4^n}{5}\right]$を$6$で割った余りを求めよ.
この動画を見る
$n$を自然数とする.
$\left[\dfrac{4^n}{5}\right]$を$6$で割った余りを求めよ.
🟨=❓ 解けたら天才⁉️
数学「大学入試良問集」【13−6 連立漸化式】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$
次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。
(2)
$x_n$および$y_n$を$n$の式で表せ。
この動画を見る
次の条件によって定められる数列$\{x_n\},\{y_n\}$を考える。
$x_1=1,y_1=5$ $x_{n+1}=x_n+y_n$ $y_{n+1}=5x_n+y_n(n=1,2,・・・)$
次の問いに答えよ。
(1)
$a_n=x_n+cy_n$とおいたとき、数列$\{a_n\}$が等比数列となるように定数$c$の値を定め、$a_n$を$n$の式で表せ。
(2)
$x_n$および$y_n$を$n$の式で表せ。
福田の数学〜早稲田大学2021年教育学部第3問〜グラフの通過範囲とx固定法
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 実数aが0 \leqq a \leqq 1を満たしながら動くとき、座標平面において3次関数\\
y=x^3-2ax+a^2 (0 \leqq x \leqq 1)のグラフが通過する領域をAとする。このとき、\\
次の問いに答えよ。\\
(1)直線x=\frac{1}{2}とAの共通部分に属する点のy座標の取り得る範囲を求めよ。\\
(2)Aに属する点のy座標の最小値を求めよ。\\
(3)Aの面積を求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 実数aが0 \leqq a \leqq 1を満たしながら動くとき、座標平面において3次関数\\
y=x^3-2ax+a^2 (0 \leqq x \leqq 1)のグラフが通過する領域をAとする。このとき、\\
次の問いに答えよ。\\
(1)直線x=\frac{1}{2}とAの共通部分に属する点のy座標の取り得る範囲を求めよ。\\
(2)Aに属する点のy座標の最小値を求めよ。\\
(3)Aの面積を求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
琉球大 積分 計算の工夫
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
この動画を見る
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
どう解く?
座標平面上の角度 2通りの解説
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle a=?$
$\angle b=?$
*図は動画内参照
この動画を見る
$\angle a=?$
$\angle b=?$
*図は動画内参照
紙を何回折るとスカイツリーの高さになるのか計算すると意外な結果に
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
紙を何回折ると、スカイツリーの高さを超えるのか。
この動画を見る
紙を何回折ると、スカイツリーの高さを超えるのか。
福田の数学〜早稲田大学2021年教育学部第2問〜ベクトルの図形への応用
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 点Oを中心とする半径1の円の周上に相異なる3点A,B,Cがあり、実数b,c\\
に対して\\
\overrightarrow{ OA }+b\ \overrightarrow{ OB }+c\ \overrightarrow{ OC }=\overrightarrow{ 0 }\\
の関係を満たしている。このとき、次の問いに答えよ。\\
(1)\angle BAO=\beta,\ \angle CAO=\gammaとするとき、bとcの値を求めよ。\\
(2)\triangle ABCの垂心をHとする。b=cのとき、\overrightarrow{ OH }を\overrightarrow{ OA }およびbを用いて表せ。
\end{eqnarray}
2021早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 点Oを中心とする半径1の円の周上に相異なる3点A,B,Cがあり、実数b,c\\
に対して\\
\overrightarrow{ OA }+b\ \overrightarrow{ OB }+c\ \overrightarrow{ OC }=\overrightarrow{ 0 }\\
の関係を満たしている。このとき、次の問いに答えよ。\\
(1)\angle BAO=\beta,\ \angle CAO=\gammaとするとき、bとcの値を求めよ。\\
(2)\triangle ABCの垂心をHとする。b=cのとき、\overrightarrow{ OH }を\overrightarrow{ OA }およびbを用いて表せ。
\end{eqnarray}
2021早稲田大学教育学部過去問
福田のわかった数学〜高校3年生理系027〜極限(27)関数の極限、三角関数の極限(7)
単元:
#数Ⅱ#三角関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(7)\\
\\
\lim_{x \to 0}\frac{\sin(2\sin x)}{3x(1+2x)} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(7)\\
\\
\lim_{x \to 0}\frac{\sin(2\sin x)}{3x(1+2x)} を求めよ。
\end{eqnarray}
福田のわかった数学〜高校1年生028〜いろいろなグラフ(2)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(2)\\
-2 \leqq x \leqq 4の範囲で\\
\\
y=[x]-x\\
\\
のグラフを描け。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(2)\\
-2 \leqq x \leqq 4の範囲で\\
\\
y=[x]-x\\
\\
のグラフを描け。
\end{eqnarray}
佐賀大(医)3次方程式の解の公式その2
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.
佐賀大(医)過去問
この動画を見る
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.
佐賀大(医)過去問
【25分で総復習】最初から『数列①』等差数列、等比数列(数学B)
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。
2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
この動画を見る
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。
2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
初見で解けない!?不等式 数I
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての不等式
x<aを満たす最大の整数=4
定数aの範囲は?
この動画を見る
xについての不等式
x<aを満たす最大の整数=4
定数aの範囲は?
数学「大学入試良問集」【13−5② 漸化式(デザイン型】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
この動画を見る
$a_1=2,a_{n+1=2a_n-2a_n-2n+1(n=1,2,・・・)}$によって定められる数列$\{a_n\}$について、次の問いに答えよ。
(1)
$b_n=a_n-(\alpha+\beta)$とおいて、数列$\{b_n\}$が等比数列になるように定数$\alpha,\beta$の値を定めよ。
(2)
一般項$a_n$を求めよ。
(3)
初項から第$n$項までの和$S_n=\displaystyle \sum_{k=1}^n a_k$を求めよ。
【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
福田の数学〜早稲田大学2021年教育学部第1問(4)〜箱に玉を入れる場合の数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
福田のわかった数学〜高校3年生理系026〜極限(26)関数の極限、三角関数の極限(6)
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(6)\\
\lim_{x \to \frac{\pi}{2}}\frac{1-\sin x}{(2x-\pi)^2} を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 三角関数の極限(6)\\
\lim_{x \to \frac{\pi}{2}}\frac{1-\sin x}{(2x-\pi)^2} を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生027〜定点通過(直線群、円群)
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
2つの円\ x^2+y^2-4x-2y=0 \ldots①\\
x^2+y^2-x+y-6=0 \ldots②\\
の交点をA,Bとするとき、次を求めよ。\\
(1)直線AB (2)A,B,(6,0)を通る円
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
2つの円\ x^2+y^2-4x-2y=0 \ldots①\\
x^2+y^2-x+y-6=0 \ldots②\\
の交点をA,Bとするとき、次を求めよ。\\
(1)直線AB (2)A,B,(6,0)を通る円
\end{eqnarray}