数学(高校生)
県立広島大 ガウス記号を含む二次方程式
重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)
単元:
#積分とその応用#面積・体積・長さ・速度#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
旭川医科大 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.
2015旭川医科大過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
p^3-q^3-27r^3-9pqr=0 \\
p^2-10q-30r=11
\end{array}
\right.
\end{eqnarray}$
を満たす自然数$(p,q,r)$の組をすべて求めよ.
2015旭川医科大過去問
対偶法と背理法の証明の全パターン①【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。
(2)
$\sqrt{ 2 }$が無理数であることを示せ。
この動画を見る
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。
(2)
$\sqrt{ 2 }$が無理数であることを示せ。
【数Ⅰ】数と式:符号ミスをしない、1次不等式のオススメの解法を紹介!!
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
符号ミスをしない、1次不等式のオススメの解法を紹介!!
この動画を見る
符号ミスをしない、1次不等式のオススメの解法を紹介!!
岐阜薬科大 対数の不等式 良問
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.
岐阜薬科大過去問
この動画を見る
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.
岐阜薬科大過去問
必要条件と十分条件②【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]
⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない
実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
この動画を見る
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]
⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない
実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
【数Ⅲ-174】曲線の長さ①(基本編)
単元:
#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)
ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①
②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。
③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
この動画を見る
数Ⅲ(曲線の長さ①・基本編)
ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①
②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。
③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
合同式の基本 2021問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2021^{2021}$を$15$で割った余りを求めよ.
この動画を見る
$2021^{2021}$を$15$で割った余りを求めよ.
関西大 整式の剰余 2つの解法で
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ
2001関西大過去問
この動画を見る
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ
2001関西大過去問
必要条件と十分条件【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
この動画を見る
$x,y,a,b$は実数とする。
次の[ア]~[ク]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返しで選んでもよい。
(1)$x=2$は、$x^2-x-2=0$であるための[ア]。
(2)$\triangle ABC \sim \triangle PQR$であるための[イ]
(3)$ab+1=a+b$は、$a=1$または$b=1$であるための[ウ]
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(6)$|a| \lt 1$かつ$|b| \lt 1$は、$ab+1 \gt a+b$であるための[カ]
(7)$xy(y-1)=0$であることは$x=y(y-1)=0$であるための[キ]
(8)$x^2y^2+(y-1)^2=0$であることは$x=y(y-1=0)$であるための[ク]
京都大 角の二等分線の定理
【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
この動画を見る
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
【数C】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよ。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る
次の条件を満たす球面の方程式を求めよ。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
【数C】空間ベクトル:球面の方程式!
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
この動画を見る
(1)球面x²+y²+z²-4x-6y+2z+5=0とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点(-2,4,-2)で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径√3の円になるとき、kの値を求めよう。
【数B】数列:基礎からわかる確率漸化式!!四面体の頂点を移動する点がn秒後に他の頂点にいる確率
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
この動画を見る
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
【数B】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよう。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る
次の条件を満たす球面の方程式を求めよう。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
【数B】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
この動画を見る
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。
【数B】空間ベクトル:球面の方程式!
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
この動画を見る
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
【数Ⅲ-173】積分と体積④(媒介変数表示編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積④・媒介変数表示編)
①$0 \leqq θ \leqq \frac{\pi}{2}$の区間において、
曲線$x=\sinθ,y=\sin2θ$と$x$軸で囲まれた図形を、$x$軸のまわりに1回転させてできる回転体の体積を求めよ。
この動画を見る
数Ⅲ(積分と体積④・媒介変数表示編)
①$0 \leqq θ \leqq \frac{\pi}{2}$の区間において、
曲線$x=\sinθ,y=\sin2θ$と$x$軸で囲まれた図形を、$x$軸のまわりに1回転させてできる回転体の体積を求めよ。
産業医大 2次方程式と3次方程式の共通解
単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
この動画を見る
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.
1996産業医大過去問
【必要条件と十分条件】を宇宙一わかりやすく【高校数学ⅠA】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】必要条件と十分条件の解説動画です
この動画を見る
【高校数学ⅠA】必要条件と十分条件の解説動画です
【高校数学】2次関数の最大最小例題~定義域の片方に文字~ 2-4.5【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$a \gt 0$とする。
関数$y=x^2-4x+5(0 \leqq x \leqq a)$について
(1) 最大値を求めよ
(2) 最小値を求めよ
この動画を見る
$a \gt 0$とする。
関数$y=x^2-4x+5(0 \leqq x \leqq a)$について
(1) 最大値を求めよ
(2) 最小値を求めよ
芝浦工大 1の4n+1乗根
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$z^{4n+1}=1$の相異なる解を$1,\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}$とする.
$\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}=\Box$
$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$
$\Box$を求めよ.
芝浦工大過去問
この動画を見る
$n$は自然数とする.
$z^{4n+1}=1$の相異なる解を$1,\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}$とする.
$\alpha_1,\alpha_2,\alpha_3・・・・・・\alpha_{4n}=\Box$
$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$
$\Box$を求めよ.
芝浦工大過去問
【数学Ⅲ】指数の積分(意外と解ける?)
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】指数の積分解説動画です
-----------------
$\int_0^1 a^t b^{1-t}dt$を求めよ
この動画を見る
【数学Ⅲ】指数の積分解説動画です
-----------------
$\int_0^1 a^t b^{1-t}dt$を求めよ
【数Ⅱ】微分法と積分法:不定積分について基礎からめちゃめちゃ分かりやすく解説!用語や記号の解説からしますので初学者必見!
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
不定積分$\int_{}^{}(3x^2-4x+4)dx$を計算しなさい.
この動画を見る
不定積分$\int_{}^{}(3x^2-4x+4)dx$を計算しなさい.
【数学】4ステップの使い方~正直、チャートをやった方がいい。【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
正直、チャートをやった方がいい。
「数学の4ステップの使い方」についてお話しています。
この動画を見る
正直、チャートをやった方がいい。
「数学の4ステップの使い方」についてお話しています。
慶應義塾大 方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$の解を$\alpha$とし,$x^2+x-1=0$の解を$\beta$とする.
(1)$\alpha\beta$を解にもつ4次方程式を1つ求めよ.
(2)(1)で求めた4次方程式の4つの解の平方の和を求めよ.
1996慶應(環境情報)過去問
この動画を見る
$x^2-x+1=0$の解を$\alpha$とし,$x^2+x-1=0$の解を$\beta$とする.
(1)$\alpha\beta$を解にもつ4次方程式を1つ求めよ.
(2)(1)で求めた4次方程式の4つの解の平方の和を求めよ.
1996慶應(環境情報)過去問
論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
北海道大 数1
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{x}$の小数部分が$\dfrac{x}{2}$に等しくなるような正の数$x$をすべて求めよ.
ただし,正の数$a$の部分とは,$a$を越えない最大の整数$n$との差$a-n$のことをいう.
北海道大過去問
この動画を見る
$\dfrac{1}{x}$の小数部分が$\dfrac{x}{2}$に等しくなるような正の数$x$をすべて求めよ.
ただし,正の数$a$の部分とは,$a$を越えない最大の整数$n$との差$a-n$のことをいう.
北海道大過去問