数学(高校生)
数学(高校生)
【n進法】同じ桁数になるようなもの?【京都大学】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
客が得してない?【壺算】

福田のおもしろ数学566〜条件付き不等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a\gt 0,b\gt 0,c\gt 0,abc=1$のとき、
$\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} \geqq \dfrac{3}{2}$
を証明して下さい。
この動画を見る
$a\gt 0,b\gt 0,c\gt 0,abc=1$のとき、
$\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} \geqq \dfrac{3}{2}$
を証明して下さい。
福田の数学〜早稲田大学2025教育学部第2問〜組合せと確率の基本的な性質

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$n$を自然数とする。
$1$から$n$mでの数字がもれなく一つずつ記入された
$n$枚の赤色のカードと$1$から$n$までの数字がもれなく
一つずつ記入された$n$枚の白色のカードがある。
この$2n$枚のカードの中から同時に$2$枚を取り出し、
カードに記入された数字を確認した後にもとに戻す、
という試行を$2$回行う。次の問いに答えよ。
(1)$1$回目に取り出した$2$枚のカードに記入された
数字が同じであり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した$2$枚の
カードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(2)$1$回目に取り出した$2$枚のカードに記入された
数字が異なり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した
$2$枚のカードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(3)$1$回目に取り出した$2$枚のカードに記入された数字と
$2$回目に取り出した$2$枚のカードに記入された
数字の間に共通の数字が存在する確率を
$n$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{2}$
$n$を自然数とする。
$1$から$n$mでの数字がもれなく一つずつ記入された
$n$枚の赤色のカードと$1$から$n$までの数字がもれなく
一つずつ記入された$n$枚の白色のカードがある。
この$2n$枚のカードの中から同時に$2$枚を取り出し、
カードに記入された数字を確認した後にもとに戻す、
という試行を$2$回行う。次の問いに答えよ。
(1)$1$回目に取り出した$2$枚のカードに記入された
数字が同じであり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した$2$枚の
カードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(2)$1$回目に取り出した$2$枚のカードに記入された
数字が異なり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した
$2$枚のカードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(3)$1$回目に取り出した$2$枚のカードに記入された数字と
$2$回目に取り出した$2$枚のカードに記入された
数字の間に共通の数字が存在する確率を
$n$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
福田のおもしろ数学565〜Nesbittの不等式の証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a\gt 0,b\gt 0,c \gt 0$のとき
$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$
を証明して下さい。
この動画を見る
$a\gt 0,b\gt 0,c \gt 0$のとき
$\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a} \geqq \dfrac{3}{2}$
を証明して下さい。
福田の数学〜早稲田大学2025教育学部第1問(4)〜2変数関数の最大

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である
四面体$ABCD$を考える。
そのような四面体の体積の最大値を求めよ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である
四面体$ABCD$を考える。
そのような四面体の体積の最大値を求めよ。
$2025$年早稲田大学教育学部過去問題
確率を30分で10点UPさせる方法

単元:
#場合の数と確率#場合の数#確率
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
1,2,3の異なる三つの椅子に、a,b,c,d,eの異なる五人を座らせる方法は何通りか
さいころを三つ降って全て二以下の確率
この動画を見る
1,2,3の異なる三つの椅子に、a,b,c,d,eの異なる五人を座らせる方法は何通りか
さいころを三つ降って全て二以下の確率
【数C】【空間ベクトル】△ABCについて,cosAの値と面積Sを求めよ(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
この動画を見る
次の3点を頂点とする△ABCについて,cosAの値と△ABCの面積Sを求めよ。
(1) A(-2,1,3)、B(-3,1,4)、C(-3,3,5)
(2) A(2,-1,2)、B(-1,1,2)、C(2,1,1)
福田のおもしろ数学564〜1分チャレンジ!数値計算

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\dfrac{2025^3+2024^3+3\cdot 2025\cdot 2024-1}{2026^2+2025^2+1}$
を計算して下さい。
この動画を見る
$\dfrac{2025^3+2024^3+3\cdot 2025\cdot 2024-1}{2026^2+2025^2+1}$
を計算して下さい。
福田の数学〜早稲田大学2025教育学部第1問(3)〜5角柱の10個の点から同一平面上にある4点を選ぶ確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)底面が正五角形である$5$角柱の頂点から相異なる
$4$点を選ぶとき、
$4$点が同一平面上にある確率を求めよ。
ただし、$4$点の選び方は同様に確からしいとする。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(3)底面が正五角形である$5$角柱の頂点から相異なる
$4$点を選ぶとき、
$4$点が同一平面上にある確率を求めよ。
ただし、$4$点の選び方は同様に確からしいとする。
$2025$年早稲田大学教育学部過去問題
これなんでなん?

福田のおもしろ数学563〜不定方程式の整数解

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$101x+102y+103z=2025$
を満たす正の整数の組$(x,y,z)$
をすべて求めて下さい。
この動画を見る
$101x+102y+103z=2025$
を満たす正の整数の組$(x,y,z)$
をすべて求めて下さい。
福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)座標平面上の$3$点
$A(1,0),B(0,-1),C(-1,1)$を
頂点とする三角形$ABC$を考える。
三角形$ABC$をその外心を中心として反時計回りに
$\dfrac{\pi}{3}$だけ回転することで得られる三角形の
垂心の座標を求めよ。
なお、三角形の$3$頂点から対辺または
その延長に下ろした$3$本の垂線は一点で交わり、
その交点を三角形の垂心という。
$2025$年早稲田大学教育学部第1問過去問題
この動画を見る
$\boxed{1}$
(2)座標平面上の$3$点
$A(1,0),B(0,-1),C(-1,1)$を
頂点とする三角形$ABC$を考える。
三角形$ABC$をその外心を中心として反時計回りに
$\dfrac{\pi}{3}$だけ回転することで得られる三角形の
垂心の座標を求めよ。
なお、三角形の$3$頂点から対辺または
その延長に下ろした$3$本の垂線は一点で交わり、
その交点を三角形の垂心という。
$2025$年早稲田大学教育学部第1問過去問題
数学IIIのこの問題、解けるかな?

単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
以下を満たすf(x)は?
f(x)=8x+2∫f(t)dt
この動画を見る
以下を満たすf(x)は?
f(x)=8x+2∫f(t)dt
【数C】【空間ベクトル】平行六面体ABCD-EFGHにおいて、AC=a、AF=AF=b、AH=cとするとき、AGをa,b,cを用いて表せ

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行六面体 $\mathrm{ABCD}$-$\mathrm{EFGH}$において、
$\overrightarrow{\mathrm{AC}} = \vec{a},\overrightarrow{\mathrm{AF}} = \vec{b}, \overrightarrow{\mathrm{AH}} = \vec{c}$ とするとき、
$\overrightarrow{\mathrm{AG}} $ を $\vec{a}, \vec{b},\vec{c}$ を用いて表せ。
この動画を見る
平行六面体 $\mathrm{ABCD}$-$\mathrm{EFGH}$において、
$\overrightarrow{\mathrm{AC}} = \vec{a},\overrightarrow{\mathrm{AF}} = \vec{b}, \overrightarrow{\mathrm{AH}} = \vec{c}$ とするとき、
$\overrightarrow{\mathrm{AG}} $ を $\vec{a}, \vec{b},\vec{c}$ を用いて表せ。
定積分を含む関数f(x)を求める問題、解けてくれーー

単元:
#数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
以下を満たすf(x)は?
f(x)=8x+2∫f(t)dt
この動画を見る
以下を満たすf(x)は?
f(x)=8x+2∫f(t)dt
福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,
$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$
で定義されている。
$a_{2024}+b_{2024}\geqq 88$
であることを証明して下さい。
この動画を見る
数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,
$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$
で定義されている。
$a_{2024}+b_{2024}\geqq 88$
であることを証明して下さい。
福田の数学〜早稲田大学2025教育学部第1問(1)〜シグマ計算

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$k$を自然数とする。次の数
$-1^2+2^2-3^2+4^2-5^2+6^2- \cdots -(2k-1)^2+(2k)^2$
を$k$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(1)$k$を自然数とする。次の数
$-1^2+2^2-3^2+4^2-5^2+6^2- \cdots -(2k-1)^2+(2k)^2$
を$k$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
【旧センター試験化学】2020追試 第4問 問3 アセチレンの付加反応

単元:
#共通テスト
指導講師:
ぺんぎん高校化学問題集
問題文全文(内容文):
問題文
アセチレン分子に付加させるとC=Cをもたない化合物ができるものはどれ
H2,H2O,HCl,CH3COOH
この動画を見る
問題文
アセチレン分子に付加させるとC=Cをもたない化合物ができるものはどれ
H2,H2O,HCl,CH3COOH
【旧センター試験化学】2020追試第4問 問2アルコールの酸化に関する量的関係の問題

【数Ⅲ】【積分とその応用】シュワルツの不等式{∫[a→b]f(x)g(x)dx}²≦(∫[a→b]{f(x)}²dx)(∫[a→b]{g(x)}²dx) を利用して、次の不等式が成り立つことを証明せよ

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
この動画を見る
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]
を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。
(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]
(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
三角形の$3$つの内角を度数表で測ったものを
$x,y,z$とする。次を証明して下さい。
$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、
ちょうど$1$つだけ有理数
$\Rightarrow x,y,z$はすべて無理数
この動画を見る
三角形の$3$つの内角を度数表で測ったものを
$x,y,z$とする。次を証明して下さい。
$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、
ちょうど$1$つだけ有理数
$\Rightarrow x,y,z$はすべて無理数
福田の数学〜東京慈恵会医科大学2025医学部第4問〜複素数の絶対値の取りうる値の範囲

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$z$は実数ではない複素数で、
$z+\dfrac{1}{z-1}$が正の実数となるものとする。
このとき、
$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の
範囲を求めよ。
ただし、$\overline{z}$は$z$に共役な複素数とする。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{4}$
$z$は実数ではない複素数で、
$z+\dfrac{1}{z-1}$が正の実数となるものとする。
このとき、
$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の
範囲を求めよ。
ただし、$\overline{z}$は$z$に共役な複素数とする。
$2025$年東京慈恵会医科大学医学部過去問題
福田のおもしろ数学560〜三角形の3つの内角を度数法で表したときの論証

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
三角形の$3$つの内角を度数法で測ったものを
$x,y,z$とする。次を証明して下さい。
$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$がすべて有理数
$\Rightarrow x,y,z$はすべて有理数
この動画を見る
三角形の$3$つの内角を度数法で測ったものを
$x,y,z$とする。次を証明して下さい。
$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$がすべて有理数
$\Rightarrow x,y,z$はすべて有理数
福田の数学〜東京慈恵会医科大学2025医学部第3問〜双曲線が表す領域と素数の性質

単元:
#数A#大学入試過去問(数学)#平面上の曲線#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
自然数$p$は$2$以上の定数とする。
$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域
を$D$とする。
自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に
含まれるような最大のものとするとき、
次の問いに答えよ。
(1)$r$を$p$を用いて表せ。
(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす
互いに異なる素数の組$(x,y,p)$のうち、
$p$の値が最小となるものを求めよ。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{3}$
自然数$p$は$2$以上の定数とする。
$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域
を$D$とする。
自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に
含まれるような最大のものとするとき、
次の問いに答えよ。
(1)$r$を$p$を用いて表せ。
(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす
互いに異なる素数の組$(x,y,p)$のうち、
$p$の値が最小となるものを求めよ。
$2025$年東京慈恵会医科大学医学部過去問題
【数式に翻訳せよ…!】整数:新潟県~全国入試問題解法

単元:
#数学(中学生)#数A#整数の性質#高校入試過去問(数学)#数学(高校生)#新潟県公立高校入試
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ある連続する2つの自然数n,mについて、n+m+55 = nm である$
この動画を見る
$ある連続する2つの自然数n,mについて、n+m+55 = nm である$
福田のおもしろ数学559〜3Xnのタイルを2つの図形で覆うことができるためのnの条件

単元:
#数A#図形の性質#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
図のような$3\times n$のタイルを(動画を参照)の
$2$種類の図形を重ならないように置いて覆う
ことができるのは$n$がどんな値のときか?
図は動画内参照
この動画を見る
図のような$3\times n$のタイルを(動画を参照)の
$2$種類の図形を重ならないように置いて覆う
ことができるのは$n$がどんな値のときか?
図は動画内参照
福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
次の問いに答えよ。ただし、対数は自然対数とする。
(1)$3$以上の自然数$n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$
(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。
(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{2}$
次の問いに答えよ。ただし、対数は自然対数とする。
(1)$3$以上の自然数$n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$
(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。
(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$
$2025$年東京慈恵会医科大学医学部過去問題
福田のおもしろ数学558〜長方形を面積の等しい5個の長方形に分割すると合同な長方形が含まれている証明

単元:
#数A#図形の性質#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある長方形を面積の等しい$5$個の長方形に
分割する。
このとき、少なくとも$2$個は
合同であることを証明せよ。
この動画を見る
ある長方形を面積の等しい$5$個の長方形に
分割する。
このとき、少なくとも$2$個は
合同であることを証明せよ。
福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$1$個のさいころを$3$回続けて投げるとき、
$k$回目に出る目を$X_k (k-1,2,3)$とする。
このとき、
積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、
和$X_1+X_2,X_2+X_3,X_3+X_1$が、
いずれも$6$の倍数にならない確率は$\boxed{イ}$である。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{1}$
$1$個のさいころを$3$回続けて投げるとき、
$k$回目に出る目を$X_k (k-1,2,3)$とする。
このとき、
積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、
和$X_1+X_2,X_2+X_3,X_3+X_1$が、
いずれも$6$の倍数にならない確率は$\boxed{イ}$である。
$2025$年東京慈恵会医科大学医学部過去問題
