中2数学
【高校受験対策/数学】死守83
単元:
#数学(中学生)#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守83
①$-1-5$を計算しなさい。
②$(-3)^2+4×(-2)$を計算しなさい。
③$10xy^2÷ (-5y)×3x$を計算しなさい。
④$2x-y-\frac{5x+y}{3}$を計算しなさい。
⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。
⑥次の方程式を解きなさい。
$x^2=9x$
⑦$l=2\pi r$を$r$について解きなさい。
⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。
⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。
➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。
ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
この動画を見る
高校受験対策・死守83
①$-1-5$を計算しなさい。
②$(-3)^2+4×(-2)$を計算しなさい。
③$10xy^2÷ (-5y)×3x$を計算しなさい。
④$2x-y-\frac{5x+y}{3}$を計算しなさい。
⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。
⑥次の方程式を解きなさい。
$x^2=9x$
⑦$l=2\pi r$を$r$について解きなさい。
⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。
⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。
➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。
ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
問題も答えもシンプル。
【中学数学】1次関数の傾きと切片を式変形せずに出す技 3-3【中2数学】
単元:
#数学(中学生)#中2数学#1次関数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$5x+2y+7=0$の傾きと切片を求めよ。
2⃣
$2x+3y-8=0$に平行で、点(6,5)を通る直線の式を求めよ。
この動画を見る
1⃣
$5x+2y+7=0$の傾きと切片を求めよ。
2⃣
$2x+3y-8=0$に平行で、点(6,5)を通る直線の式を求めよ。
【裏技】これ知ってた?
【中学数学】この形の問題の裏技集~角の二等分線と内角の和~ 4-6.5【中2数学】
【中学数学】ブーメラン・キツネ型の図形~平行線と角~ 4-5【中2数学】
x求めれる?
単元:
#数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図、AO=AB=CB=BDの求め方解説動画です
この動画を見る
動画内の図、AO=AB=CB=BDの求め方解説動画です
【高校受験対策/数学】死守82
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#資料の活用#1次関数#文字と式#平面図形#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守82
①$3-(-6)$を計算しなさい。
②$9÷(-\frac{1}{5})+4$を計算しなさい。
③$\sqrt{28}-\sqrt{7}$を計算しなさい。
④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。
⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。
⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。
⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
この動画を見る
高校受験対策・死守82
①$3-(-6)$を計算しなさい。
②$9÷(-\frac{1}{5})+4$を計算しなさい。
③$\sqrt{28}-\sqrt{7}$を計算しなさい。
④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。
⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。
⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。
⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
【中学数学】多角形の外角の和~平行線と角~ 4-4【中2数学】
【高校受験対策/数学】死守81(問題作りました)
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#平行と合同#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
この動画を見る
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
扱ってる図に違和感
分母が文字の連立方程式 名古屋高校
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{x+y}{xy} =5 \\
\frac{4}{x} - \frac{3}{y} = 6
\end{array}
\right.
\end{eqnarray}
$
名古屋高等学校
この動画を見る
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{x+y}{xy} =5 \\
\frac{4}{x} - \frac{3}{y} = 6
\end{array}
\right.
\end{eqnarray}
$
名古屋高等学校
【中学数学】多角形の内角の和~平行線と角~ 4-3【中2数学】
単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
十五角形の内角の和を求めよ。
2⃣
正八角形の1つの内角の大きさを答えよ。
3⃣
1つの内角の大きさが150$^{ \circ }$である正多角形は何角形か。
この動画を見る
1⃣
十五角形の内角の和を求めよ。
2⃣
正八角形の1つの内角の大きさを答えよ。
3⃣
1つの内角の大きさが150$^{ \circ }$である正多角形は何角形か。
【中学数学】三角形の内角と外角~平行線と角~ 4-2【中2数学】
【高校受験対策/数学】死守-80
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80
①$-3+(-4)×5$を計算しなさい。
②$4xy÷8x×6y$を計算しなさい。
③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。
④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$
③下の図で、$\angle x$の大きさを求めなさい。
④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。
⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。
⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。
⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る
高校受験対策・死守80
①$-3+(-4)×5$を計算しなさい。
②$4xy÷8x×6y$を計算しなさい。
③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。
④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$
③下の図で、$\angle x$の大きさを求めなさい。
④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。
⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。
⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。
⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
【裏技】これ知ってた?
【中学数学】平行線と角の裏技~補助線不要~ 4-1.5【中2数学】
【中学数学】連立方程式の演習問題~福井県の2012の入試問題~【高校受験】
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
本屋と図書館の道の途中に駅がある。
Aさんは、本屋から駅まで自転車で行き、駅から図書館まで歩いていく。
Bさんは、同じ道を図書館から駅まで自転車で行き、駅から本屋まで歩いていく。
Aさんが本屋を、Bさんが図書館を同時に出発したところ、10分後に出会った。
そのとき、Aさんは歩いており、Bさんは自転車に乗っていた。
また、Bさんが本屋に到着した8分後に、Aさんは図書館に到着した。
ただし、2人の自転車の速さは時速12km、歩く速さは時速4kmとする。
このとき、次の問いに答えよ。
(1)図書館から2人が出会ったところまでの道のりを求めよ。
(2)本屋から駅までの道のりを$x$km、駅から2人が出会ったところまでの道のりを
$y$kmとして、$x$と$y$についての連立方程式をつくれ。
(3)(2)の連立方程式を解いて、本屋から図書館までの道のりを求めよ。
この動画を見る
本屋と図書館の道の途中に駅がある。
Aさんは、本屋から駅まで自転車で行き、駅から図書館まで歩いていく。
Bさんは、同じ道を図書館から駅まで自転車で行き、駅から本屋まで歩いていく。
Aさんが本屋を、Bさんが図書館を同時に出発したところ、10分後に出会った。
そのとき、Aさんは歩いており、Bさんは自転車に乗っていた。
また、Bさんが本屋に到着した8分後に、Aさんは図書館に到着した。
ただし、2人の自転車の速さは時速12km、歩く速さは時速4kmとする。
このとき、次の問いに答えよ。
(1)図書館から2人が出会ったところまでの道のりを求めよ。
(2)本屋から駅までの道のりを$x$km、駅から2人が出会ったところまでの道のりを
$y$kmとして、$x$と$y$についての連立方程式をつくれ。
(3)(2)の連立方程式を解いて、本屋から図書館までの道のりを求めよ。
【中学数学】平行線と角の問題演習~補助線の引き方~ 4-1.5【中2数学】
【高校受験対策/数学】死守-79
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79
①$-3-(-7)$を計算しなさい。
②$8a^3b^5÷4a^2b^3$を計算しなさい。
③$x^2-8x+16$を因数分解しなさい。
④$a=\frac{2b-c}{5}$を$c$について解きなさい。
⑤二次方程式$x^2+5x+2=0$を解きなさい。
⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。
⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。
平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。
ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$
⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。
⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。
ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る
高校受験対策・死守79
①$-3-(-7)$を計算しなさい。
②$8a^3b^5÷4a^2b^3$を計算しなさい。
③$x^2-8x+16$を因数分解しなさい。
④$a=\frac{2b-c}{5}$を$c$について解きなさい。
⑤二次方程式$x^2+5x+2=0$を解きなさい。
⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。
⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。
平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。
ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$
⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。
⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。
ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
【高校受験対策/数学】関数56
単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数56
Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。
①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。
②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。
③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
この動画を見る
高校受験対策・関数56
Q.
図のように、円の中心$O$と点$P$が直線$l$上にあり、円の$O$半径は10$cm$、$OP$間の距離は20$cm$である。
点$O$が固定されたまま、点$P$は毎秒3$cm$の速さで直線$l$上を図の矢印の向きに進み、出発してから10秒後に停止する。
点$P$が出発してから$x$秒後の$OP$間の距離を$y cm$として次の問いに答えなさい。
①点$P$が出発してから点$O$と重なるまでの間について、$y$を$x$の式で表しなさい。
②点$P$が点$O$と重なってから停止するまでの間について、$y$を$x$の式で表しなさい。
③点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
④点$P$が出来するのと同時に、毎秒1$cm$の一定の割合で円の半径が小さくなり始め、点$P$が停止するまでの間、円$O$は中心が固定されたまま徐々に小さくなっていくものとする。
点$P$が出発してから停止するまでの間において、点$P$が円$O$の周上または内部にある時間は何秒間か求めなさい。
補助線の引き方 3通りで解説
【中学数学】平行線と角の問題演習・基礎 4-1.5【中2数学】
お茶の水女子大 連立二元三次方程式
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3=91 \\
xy=12
\end{array}
\right.
\end{eqnarray}$
お茶の水女子大過去問
この動画を見る
実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3+y^3=91 \\
xy=12
\end{array}
\right.
\end{eqnarray}$
お茶の水女子大過去問
【高校受験対策/数学】死守-78
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78
①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。
②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。
③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。
ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$
④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る
高校受験対策・死守78
①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。
②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。
③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。
ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$
④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
【中学数学】方程式の演習問題~早稲田の過去問~【高校受験】
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学高等学院
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
黒、白2種類の石がいくつかずつある。
はじめ、白石の個数が全体の個数にしめる割合は40%であった。
白石の個数を14個減らしたところ、白石の個数が全体の個数にしめる割合は25%になった。
はじめにあった黒石、白石の個数をそれぞれ求めよ。
この動画を見る
黒、白2種類の石がいくつかずつある。
はじめ、白石の個数が全体の個数にしめる割合は40%であった。
白石の個数を14個減らしたところ、白石の個数が全体の個数にしめる割合は25%になった。
はじめにあった黒石、白石の個数をそれぞれ求めよ。
【高校受験対策/数学】???
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】???
ある中学校の全校の生徒数は、男女合わせて155人です。
この中学校の男子生徒の80%と女子生徒の60%が運動部に所属しており、
運動部に所属している男子の人数は、 運動部に所属している女子の人数より19人多い。
このとき運動部に所属している男子の人数と運動部に所属している女子の人数を、それぞれ求めなさい。
この動画を見る
【高校受験対策/数学】???
ある中学校の全校の生徒数は、男女合わせて155人です。
この中学校の男子生徒の80%と女子生徒の60%が運動部に所属しており、
運動部に所属している男子の人数は、 運動部に所属している女子の人数より19人多い。
このとき運動部に所属している男子の人数と運動部に所属している女子の人数を、それぞれ求めなさい。
面積の和
67.5° ラ・サール
単元:
#数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形ABCDの面積=?
*図は動画内参照
ラ・サール高等学校
この動画を見る
四角形ABCDの面積=?
*図は動画内参照
ラ・サール高等学校
【高校受験対策/数学】死守77
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77
①$-3+(-2)$を計算しなさい。
➁$8-4÷(-2)^2$を計算しなさい。
③$5×(-5a)$を計算しなさい。
④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。
⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。
⑥$(2a-b)^2$を展開しなさい。
⑦$x^2-x-42$を因数分解しなさい。
⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。
⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。
ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る
高校受験対策・死守77
①$-3+(-2)$を計算しなさい。
➁$8-4÷(-2)^2$を計算しなさい。
③$5×(-5a)$を計算しなさい。
④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。
⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。
⑥$(2a-b)^2$を展開しなさい。
⑦$x^2-x-42$を因数分解しなさい。
⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。
⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。
ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。