平方根
【高校受験対策/数学】死守61
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#1次関数#2次関数#文字と式#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守6
①$-5+2$を計算しなさい。
➁$6 \times \frac{2a+1}{3}$を計算しなさい。
③$(\sqrt{7}-1)(\sqrt{7}+1)$を計算しなさい。
④連立方程式を解きなさい。
$y=x+6$
$y=-2x+3$
⑤2次方程式$x^2-3x-2=0$を解きなさい。
⑥1辺の長さが$x$ cmの正方形が あります。
この正方形の周の長さを$y$ cmとするとき、$y$を$x$の式で表しなさい。
⑦34人の団体Xと40人の団体Yが博物館に行きます。
この博物館の1人分の入館料は$a$円で、40人以上の団体の入館料は20%引きになります。
このとき、団体Xと団体Yでは入館料の合計はどちらが多くかかりますか。
その理由をことばや式を用いて書きなさい。ただし消費税は考えないものとする。
⑧右の図で、3点、A、B、Cは円$o$の周上にあります。 このとき$\angle x$の大きさを求めなさい。
⑨右下の図のような長方形ABCDの紙を、 頂点Aが頂点Cに重なるように折ったときの折り目の線分を作図によって求めなさい。
ただし、作図には定規とコンパスを用い作図に使った線は消さないでおくこと。
この動画を見る
高校受験対策・死守6
①$-5+2$を計算しなさい。
➁$6 \times \frac{2a+1}{3}$を計算しなさい。
③$(\sqrt{7}-1)(\sqrt{7}+1)$を計算しなさい。
④連立方程式を解きなさい。
$y=x+6$
$y=-2x+3$
⑤2次方程式$x^2-3x-2=0$を解きなさい。
⑥1辺の長さが$x$ cmの正方形が あります。
この正方形の周の長さを$y$ cmとするとき、$y$を$x$の式で表しなさい。
⑦34人の団体Xと40人の団体Yが博物館に行きます。
この博物館の1人分の入館料は$a$円で、40人以上の団体の入館料は20%引きになります。
このとき、団体Xと団体Yでは入館料の合計はどちらが多くかかりますか。
その理由をことばや式を用いて書きなさい。ただし消費税は考えないものとする。
⑧右の図で、3点、A、B、Cは円$o$の周上にあります。 このとき$\angle x$の大きさを求めなさい。
⑨右下の図のような長方形ABCDの紙を、 頂点Aが頂点Cに重なるように折ったときの折り目の線分を作図によって求めなさい。
ただし、作図には定規とコンパスを用い作図に使った線は消さないでおくこと。
【高校受験対策/数学】死守60
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#空間図形#1次関数#平行と合同#確率#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守605-41
①$-5-(-7)$を計算しなさい。
➁$(\frac{1}{4}-\frac{2}{3})\times 12$を計算しなさい。
③$4x \times\frac{2}{5}xy \div 2x^2$を計算しなさい。
④$(-2a+3)(2a+3)+9$を計算しなさい。
⑤$\sqrt{24} \div \sqrt{8}-\sqrt{12}$を計算しなさい。
⑥$150$を素因数分解しなさい。
⑦次の連立方程式を解きなさい。
$y=4(x+2)$
$6x-y=-10$
⑧次の数量の関係を等式で表しなさい。
100円硬貨が$a$ 枚、50円硬貨が$b$ 枚あり、これらをすべて10円硬貨に両替すると$c$ 枚になる。
⑨箱の中に同じ大きさの白玉がたくさん入っている。
そこに同じ大きさの黒玉100個入れてよくかき混ぜた後、その中から34個の玉を無作為に取りだしたところ、黒玉が4個入っていた。
この結果から、箱の中にはおよそ何個の白玉が入っていると考えられるか求めなさい。
➉半径6cmの球を中心$o$を通る平面で切った半球の表面積を求めなさい。
⑪右の図で$l /\!/ m$、$AB=AC$のとき、$\angle x$ の大きさを求めなさい。
この動画を見る
高校受験対策・死守605-41
①$-5-(-7)$を計算しなさい。
➁$(\frac{1}{4}-\frac{2}{3})\times 12$を計算しなさい。
③$4x \times\frac{2}{5}xy \div 2x^2$を計算しなさい。
④$(-2a+3)(2a+3)+9$を計算しなさい。
⑤$\sqrt{24} \div \sqrt{8}-\sqrt{12}$を計算しなさい。
⑥$150$を素因数分解しなさい。
⑦次の連立方程式を解きなさい。
$y=4(x+2)$
$6x-y=-10$
⑧次の数量の関係を等式で表しなさい。
100円硬貨が$a$ 枚、50円硬貨が$b$ 枚あり、これらをすべて10円硬貨に両替すると$c$ 枚になる。
⑨箱の中に同じ大きさの白玉がたくさん入っている。
そこに同じ大きさの黒玉100個入れてよくかき混ぜた後、その中から34個の玉を無作為に取りだしたところ、黒玉が4個入っていた。
この結果から、箱の中にはおよそ何個の白玉が入っていると考えられるか求めなさい。
➉半径6cmの球を中心$o$を通る平面で切った半球の表面積を求めなさい。
⑪右の図で$l /\!/ m$、$AB=AC$のとき、$\angle x$ の大きさを求めなさい。
【高校受験対策/数学】死守59
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#空間図形#確率#文字と式#平面図形#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策/数学 死守59
①$-5 \times 3$を計算しなさい。
②$9-6^2$を計算しなさい。
③$\sqrt{14}\times\sqrt{7}-\sqrt{8}$を計算しなさい。
④$x=1$、$y=-2$のとき、$3x(x+2y)+y(x+2y)$の値を求めなさい。
⑤絶対値が$4$である数をすべて書きなさい。
⑥$y$は$x$に比例し、$x=2$のとき$y=-6$となります。
$x=-3$のとき $y$の値を求めなさい。
⑦右の図のように、2種類のマーク(♥、◆)のカードが4枚あります。
この4枚のカードのうち、3枚のカードを1枚ずつ左から右に並べるとき、
異なるマークのカードが交互になる並べ方は何通りあるか求めなさい。
⑧右の図のような正三角錐OABCがあります。
辺ABとねじれの位置にある辺はどれですか、書きなさい。
⑨右の資料は、A市における各日の最高気温を1週間記録したものです。 中央値を求めなさい。
➉右の図のような$△ABC$があります。AC上に点Pを、$\angle PBC=30°$となるようにとります。
点Pを定規とコンパス を使って作図しなさい。
ただし点を示す記号Pをかき入れ、作図に用いた線 は消さないこと。
この動画を見る
高校受験対策/数学 死守59
①$-5 \times 3$を計算しなさい。
②$9-6^2$を計算しなさい。
③$\sqrt{14}\times\sqrt{7}-\sqrt{8}$を計算しなさい。
④$x=1$、$y=-2$のとき、$3x(x+2y)+y(x+2y)$の値を求めなさい。
⑤絶対値が$4$である数をすべて書きなさい。
⑥$y$は$x$に比例し、$x=2$のとき$y=-6$となります。
$x=-3$のとき $y$の値を求めなさい。
⑦右の図のように、2種類のマーク(♥、◆)のカードが4枚あります。
この4枚のカードのうち、3枚のカードを1枚ずつ左から右に並べるとき、
異なるマークのカードが交互になる並べ方は何通りあるか求めなさい。
⑧右の図のような正三角錐OABCがあります。
辺ABとねじれの位置にある辺はどれですか、書きなさい。
⑨右の資料は、A市における各日の最高気温を1週間記録したものです。 中央値を求めなさい。
➉右の図のような$△ABC$があります。AC上に点Pを、$\angle PBC=30°$となるようにとります。
点Pを定規とコンパス を使って作図しなさい。
ただし点を示す記号Pをかき入れ、作図に用いた線 は消さないこと。
【考え方が大切!整数論】平方根:香川県高校入試~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)#香川県公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 香川県の高校
次の問いに答えなさい。
$\sqrt{ 180a }$が自然数となる
ような自然数$a$のうち、最も小さい数を求めよ。
この動画を見る
入試問題 香川県の高校
次の問いに答えなさい。
$\sqrt{ 180a }$が自然数となる
ような自然数$a$のうち、最も小さい数を求めよ。
平方根の求め方と足し算・引き算を超分かりやすく解説!!【生徒からの質問18】
単元:
#数学(中学生)#中3数学#平方根
指導講師:
こばちゃん塾
問題文全文(内容文):
1⃣
①16の平方根は?
②5の平方根は?
③18の平方根は?
2⃣
①$ 2 \sqrt 3 +5 \sqrt 3$=
②$ \sqrt 2 - 4 \sqrt 2 $=
③$ 2 \sqrt 3 +3 \sqrt 3 +3 \sqrt 2$=
④$ \sqrt {50} +3 \sqrt 2$=
この動画を見る
1⃣
①16の平方根は?
②5の平方根は?
③18の平方根は?
2⃣
①$ 2 \sqrt 3 +5 \sqrt 3$=
②$ \sqrt 2 - 4 \sqrt 2 $=
③$ 2 \sqrt 3 +3 \sqrt 3 +3 \sqrt 2$=
④$ \sqrt {50} +3 \sqrt 2$=
【中学数学】平方根:平方根の値の範囲! √10<a<≦√48をみたす自然数aをすべて求めなさい。
単元:
#数学(中学生)#中3数学#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{10}\lt a\leqq \sqrt{48}$をみたす自然数$a$をすべて求めなさい。
この動画を見る
$\sqrt{10}\lt a\leqq \sqrt{48}$をみたす自然数$a$をすべて求めなさい。
【高校受験対策/数学】死守57
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
【高校受験対策/数学】死守56
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
【高校受験対策/数学】死守55
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
【数学】√36の平方根は?~意外と解けない人が多い~
【高校受験対策/数学】死守53
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
【中学数学】平方根:平方根の値の範囲をわかりやすく解説!
単元:
#数学(中学生)#中3数学#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
①$2<\sqrt a≦3$を満たす自然数aをすべて求めなさい。
②$2<\sqrt a≦5.2$を満たす自然数aがいくつあるか求めなさい。
この動画を見る
①$2<\sqrt a≦3$を満たす自然数aをすべて求めなさい。
②$2<\sqrt a≦5.2$を満たす自然数aがいくつあるか求めなさい。
【数学】便利すぎる!!日常でのルートの使い方
【中学数学】中高一貫校問題集2(代数編)67:平方根:√1 /24,1/5,√1/20,1/6の大小を比較せよ。
単元:
#数学(中学生)#中3数学#平方根
教材:
#TK数学#TK数学問題集2(代数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
√1 /24,1/5,√1/20,1/6の大小を比較せよ。
この動画を見る
√1 /24,1/5,√1/20,1/6の大小を比較せよ。
【数学】平方数の語呂合わせ~11から29まで覚えよう~
【中学数学】平方根:√5の整数部分をa、小数部分をbとするとき、a²-b²の値を求めましょう!
単元:
#数学(中学生)#中3数学#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt5$の整数部分をa、小数部分をbとするとき、$a²-b²$の値を求めましょう
この動画を見る
$\sqrt5$の整数部分をa、小数部分をbとするとき、$a²-b²$の値を求めましょう
【中学数学】平方根:√2=1.414を使って近似値を求めよう!根号の変形方法は?
単元:
#数学(中学生)#中3数学#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt2=1.414$のとき、次の値を求めよ。
(1)$\sqrt{50}$
(2)$\sqrt{18}$
(3)$\sqrt{200}$
(4)$\sqrt{20000}$
(5)$\sqrt{0.02}$
この動画を見る
$\sqrt2=1.414$のとき、次の値を求めよ。
(1)$\sqrt{50}$
(2)$\sqrt{18}$
(3)$\sqrt{200}$
(4)$\sqrt{20000}$
(5)$\sqrt{0.02}$
【数学】平方根の見方が変わる真実を教えます~知らないと損です~
【高校受験対策/数学】死守52
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
この動画を見る
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
甲陽学院高校 整数問題 高校入試
単元:
#算数(中学受験)#数学(中学生)#中3数学#平方根#過去問解説(学校別)#甲陽学院中学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$S_n=1!+2!+3!+…+n!$
$S_n$が平方数となる$n$を全て求めよ
(1)
$5!$を求めよ
$S_{10}$の1の位
出典:甲陽学院高等学校 入試問題
この動画を見る
$S_n=1!+2!+3!+…+n!$
$S_n$が平方数となる$n$を全て求めよ
(1)
$5!$を求めよ
$S_{10}$の1の位
出典:甲陽学院高等学校 入試問題
大阪教育大 複雑な3乗根の外し方
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
この動画を見る
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)
単元:
#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
【数学】中3-23 ルートの問題をつめこんでみた
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?
$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?
$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?
$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!
◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?
⑥2番目に小さい$a$は?
この動画を見る
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?
$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?
$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?
$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!
◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?
⑥2番目に小さい$a$は?
【数学】中3-22 ルートと展開のコラボ
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$
⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
この動画を見る
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$
⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
【数学】中3-19 有理化
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$が①____にいたら有理化しよう!!
②$\displaystyle \frac{\sqrt{ 5 }}{\sqrt{ 3 }}=$
③$\displaystyle \frac{3}{\sqrt{ 12 }}=$
④$\displaystyle \frac{6}{\sqrt{ 18 }}=$
◎計算しよう!
⑤$4\sqrt{ 3 } \div \sqrt{ 2 }=$
⑥$\sqrt{ 35 } \div (-\sqrt{ 2 }) \div \sqrt{ 15 }=$
$\sqrt{ 3 }=1.732,\sqrt{ 30 }=5.477$とすると、次の値はいくつ?
⑦$\sqrt{ 3000 }=$
⑧$\sqrt{ 30000 }=$
⑨$\sqrt{ 0.03 }=$
⑩$\sqrt{ \displaystyle \frac{3}{10} }$
この動画を見る
$\sqrt{ }$が①____にいたら有理化しよう!!
②$\displaystyle \frac{\sqrt{ 5 }}{\sqrt{ 3 }}=$
③$\displaystyle \frac{3}{\sqrt{ 12 }}=$
④$\displaystyle \frac{6}{\sqrt{ 18 }}=$
◎計算しよう!
⑤$4\sqrt{ 3 } \div \sqrt{ 2 }=$
⑥$\sqrt{ 35 } \div (-\sqrt{ 2 }) \div \sqrt{ 15 }=$
$\sqrt{ 3 }=1.732,\sqrt{ 30 }=5.477$とすると、次の値はいくつ?
⑦$\sqrt{ 3000 }=$
⑧$\sqrt{ 30000 }=$
⑨$\sqrt{ 0.03 }=$
⑩$\sqrt{ \displaystyle \frac{3}{10} }$
【数学】中3-17 ルートの変形
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!
◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$
$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!
◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
この動画を見る
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!
◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$
$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!
◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
【数学】中3-16 平方根②
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。
◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!
この動画を見る
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。
◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!
【数学】中3-15 平方根①
単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①____がすると$a$になる数を$a$の平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!
次の数の平方根をもとめよう!
⑥$5$→
⑦$9$→
⑧$\displaystyle \frac{25}{64}$→
⑨$0.36$→
次の値はいくつ?
⑩$(-\sqrt{ 6 })^2=$
⑪$-(\sqrt{ 11 })^2=$
⑫$-(\sqrt{ 49 })=$
⑬$\sqrt{ 100 }=$
⑭$\sqrt{ (-3) ^2 })=$
⑮$-\sqrt{ \displaystyle \frac{16}{81} }=$
この動画を見る
①____がすると$a$になる数を$a$の平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!
次の数の平方根をもとめよう!
⑥$5$→
⑦$9$→
⑧$\displaystyle \frac{25}{64}$→
⑨$0.36$→
次の値はいくつ?
⑩$(-\sqrt{ 6 })^2=$
⑪$-(\sqrt{ 11 })^2=$
⑫$-(\sqrt{ 49 })=$
⑬$\sqrt{ 100 }=$
⑭$\sqrt{ (-3) ^2 })=$
⑮$-\sqrt{ \displaystyle \frac{16}{81} }=$