相似な図形

実は半分しか入ってないって信じれる?

単元:
#数学(中学生)#中3数学#相似な図形#その他#その他
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
実は半分しか入ってないって信じれる?
※問題は動画内参照
この動画を見る
実は半分しか入ってないって信じれる?
※問題は動画内参照
サウンドを聞きながら数学が好きになる!~全国入試問題解法 #数学 #数検 #高校入試 #勉強 #ライブ

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
サウンドを聞きながら数学が好きになる!
直角三角形 において
が成り立つ。
【 】
【 】
【 】
図を用いて 証明せよ。
※図は動画内参照
この動画を見る
サウンドを聞きながら数学が好きになる!
直角三角形
が成り立つ。
【
【
【
図を用いて 証明せよ。
※図は動画内参照
二等辺三角形と正方形

気付けば一瞬!!正方形の面積

三角形の内角の二等分線と言われたら?

補助線引けるかな?

疑うところからすべては始まる 聖徳学園

単元:
#大学入試過去問(数学)#相似な図形#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
聖徳学園高等学校2023
この動画を見る
x=?
*図は動画内参照
聖徳学園高等学校2023
円と回転体 2024愛知県のラスボス

福田のおもしろ数学024〜10秒でできたら天才〜三角形の中の線分の長さ

単元:
#数学(中学生)#中3数学#数A#図形の性質#相似な図形#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
【中学数学】中点連結定理の問題演習~有名例題2問~ 5-4.5【中3理科】

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)四角形ABCDはAD//BDの台形で2点PQはそれぞれ辺AB,DCの中点である。
AD=14cm,BC=22cmのときPQの長さを求めよ。
問題の図形は動画参照
(2)△ABCの辺AB,BC,CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
問題の図形は動画参照
この動画を見る
(1)四角形ABCDはAD//BDの台形で2点PQはそれぞれ辺AB,DCの中点である。
AD=14cm,BC=22cmのときPQの長さを求めよ。
問題の図形は動画参照
(2)△ABCの辺AB,BC,CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
問題の図形は動画参照
【中学数学】中点連結定理の問題演習~有名例題2問~

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 四角形ABCDはAD //BCの台形で, 2点P,Qはそれぞれ辺AB, DCの中点である。
AD = 14cm, BC = 22cm, のとき, PQの長さを求めよ
(2) △ABCの辺AB, BC, CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
この動画を見る
(1) 四角形ABCDはAD //BCの台形で, 2点P,Qはそれぞれ辺AB, DCの中点である。
AD = 14cm, BC = 22cm, のとき, PQの長さを求めよ
(2) △ABCの辺AB, BC, CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
【中学数学】中点連結定理を分かりやすく~証明~ 5-4【中3数学】

数学の先生こうじゃない?

【三角形を活かす!】図形:法政大学高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#法政大学高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
の大きさを求めなさい.
法政大高校過去問
この動画を見る
法政大高校過去問
静かな気持ちで図形問題を解く動画~全国入試問題解法 #shorts #数学 #高校入試 #動体視力

長方形の相似 中央大学附属

何個見つけられるかな?相似をすべて見つけろ!! 浜松開誠館(静岡)改題

速さを相似で 筑波大附属

単元:
#数学(中学生)#中3数学#相似な図形#速さ#速さその他#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
36km離れている2地点A,Bがある。
PさんはAを出発し、時速5kmでBへ向かった。QさんはPと同時にBを出発し、一定の速さでAへ向かったところ、途中でPとすれ違い、その5時間後にAに到着した。
2人がすれ違ったのは同時に出発してから何時間後か。
筑波大学付属高等学校
この動画を見る
36km離れている2地点A,Bがある。
PさんはAを出発し、時速5kmでBへ向かった。QさんはPと同時にBを出発し、一定の速さでAへ向かったところ、途中でPとすれ違い、その5時間後にAに到着した。
2人がすれ違ったのは同時に出発してから何時間後か。
筑波大学付属高等学校
2023高校入試数学解説99問目 円錐の展開図 鳥取県(改)

2023高校入試数学解説94問目 正四面体の中の三角形 茨城県

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
△CPQはどんな三角形か
ア.正三角形
イ.二等辺三角形
ウ.直角三角形
エ.直角二等辺三角形
*図は動画内参照
2023茨城県
この動画を見る
△CPQはどんな三角形か
ア.正三角形
イ.二等辺三角形
ウ.直角三角形
エ.直角二等辺三角形
*図は動画内参照
2023茨城県
佐賀県立高校入試2021年
(4)「相似」

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年
(4)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS 、△BEDの面積をS とするとき、S :S を
最も簡単な整数の比で表しなさい。
この動画を見る
佐賀県立高校入試2021年
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS
最も簡単な整数の比で表しなさい。
高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題

単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#相似な図形#文章題#文章題その他#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
(1)
(2)
(3)
(4)二次方程式 を解け.
(1)底面が1辺6cmの正方形,体積 の四角錐の高さは?
(2) に当てはまるaの値をすべて求めよ.
(3) のとき, は?
n番目の白タイルの枚数をnの式で表せ.
この動画を見る
(1)
(2)
(3)
(4)二次方程式
(1)底面が1辺6cmの正方形,体積
(2)
(3)
n番目の白タイルの枚数をnの式で表せ.
佐賀県立高校入試2021年
(1)~(3)「相似」

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2021年
(1)~(3)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
(1)線分AEの長さを求めなさい。
(2)△ABC △BEDであることを証明しなさい。
(3)△ABEの面積を求めなさい。
この動画を見る
佐賀県立高校入試2021年
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。
(1)線分AEの長さを求めなさい。
(2)△ABC
(3)△ABEの面積を求めなさい。
中学生向け図形問題

佐賀県立高校入試2022年
相似(4)~(6)

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年
相似(4)~(6)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(4) 線分ADの長さを求めなさい。
(5) 線分EFの長さを求めなさい。
(6) △AFEの面積を求めなさい。
この動画を見る
佐賀県立高校入試2022年
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(4) 線分ADの長さを求めなさい。
(5) 線分EFの長さを求めなさい。
(6) △AFEの面積を求めなさい。
佐賀県立高校入試2022年
相似(1)~(3)

単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年
相似(1)~(3)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(1) ∠ABCの大きさを求めなさい。
(2) △ACD △AFEであることを証明しなさい。
(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
この動画を見る
佐賀県立高校入試2022年
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(1) ∠ABCの大きさを求めなさい。
(2) △ACD
(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
半円と正方形

【中学数学】三角形の相似をどこよりも丁寧に~相似条件~ 5-1【中3数学】

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

単元:
#大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
複素数からなる数列 を、次の条件で定める。
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)
である。
(2) を用いて、 のように を極形式で
表すとき、 である。
(3)すべての正の整数nに対する が互いに相似になる点Pに対応する
複素数は、 である。
(4) となる最小のnは である。
(5) が実軸上にある最小の正の整数kは である。
2022上智大学理工学部過去問
この動画を見る
複素数からなる数列
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)
(2)
表すとき、
(3)すべての正の整数nに対する
複素数は、
(4)
(5)
2022上智大学理工学部過去問
【数検3級】数学検定3級2次 問題8

単元:
#数学(中学生)#中3数学#数学検定・数学甲子園・数学オリンピック等#相似な図形#数学検定#数学検定3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題8.右の図のような、∠A=90°の直角三角形ABCについて、次の問いに答えなさい。
(18) 辺BC上にあり、△ABC∽△PBAとなる点Pを、下の<注>にしたがって作図しなさい。作図をする代わりに、作図の方法を言葉で説明してもかまいません。
<注> a コンパスとものさしを使って作図してください。ただし、ものさしは直線を引くことだけに用いてください。
b コンパスの線は、はっきりと見えるようにかいてください。コンパスの針をさした位置に、・の印をつけてください。
c 作図に用いた線は消さないで残しておき、線を引いた順に①、②、③、・・・の番号を書いてください。
この動画を見る
問題8.右の図のような、∠A=90°の直角三角形ABCについて、次の問いに答えなさい。
(18) 辺BC上にあり、△ABC∽△PBAとなる点Pを、下の<注>にしたがって作図しなさい。作図をする代わりに、作図の方法を言葉で説明してもかまいません。
<注> a コンパスとものさしを使って作図してください。ただし、ものさしは直線を引くことだけに用いてください。
b コンパスの線は、はっきりと見えるようにかいてください。コンパスの針をさした位置に、・の印をつけてください。
c 作図に用いた線は消さないで残しておき、線を引いた順に①、②、③、・・・の番号を書いてください。