数学(中学生)
数学(中学生)
【12/28】中3冬特訓4日目

単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
この動画を見る
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
【12/26】中3冬特訓2日目

単元:
#数学(中学生)#中3数学
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{32}-2\sqrt{3} \times \sqrt{6}$
➁$\sqrt{3}-\sqrt{27} + \sqrt{48}$
③$7\sqrt{2}-\sqrt{18} + \frac{8}{\sqrt{2}}$
④
列車が鉄橋を渡り始めてから渡り終わるまでにかかる時間は、長さ 200mの普通列車では30秒、長さ160mの特急列車では14秒であった。 また、特急列車の速さは普通列車の速さの2倍であった。
この鉄橋の長さは何mか求めなさい。
この動画を見る
①$\sqrt{32}-2\sqrt{3} \times \sqrt{6}$
➁$\sqrt{3}-\sqrt{27} + \sqrt{48}$
③$7\sqrt{2}-\sqrt{18} + \frac{8}{\sqrt{2}}$
④
列車が鉄橋を渡り始めてから渡り終わるまでにかかる時間は、長さ 200mの普通列車では30秒、長さ160mの特急列車では14秒であった。 また、特急列車の速さは普通列車の速さの2倍であった。
この鉄橋の長さは何mか求めなさい。
【何秒で終わる?】ルートの変形特訓

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
1 $\sqrt{8}=$
2 $\sqrt{9}=$
3 $\sqrt{12}=$
4 $\sqrt{6}=$
5 $\sqrt{20}=$
6 $\sqrt{4}=$
7 $\sqrt{18}=$
8 $\sqrt{32}=$
9 $\sqrt{15}=$
10 $\sqrt{24}=$
11 $\sqrt{100}=$
12 $\sqrt{40}=$
13 $\sqrt{25}=$
14 $\sqrt{45}=$
15 $\sqrt{30}=$
16 $\sqrt{600}=$
17 $\sqrt{16}=$
18 $\sqrt{50}=$
19 $\sqrt{28}=$
20 $\sqrt{72}=$
21 $\sqrt{56}=$
22 $\sqrt{38}=$
23 $\sqrt{75}=$
24 $\sqrt{1000}=$
25 $\sqrt{80}=$
26 $\sqrt{98}=$
27 $\sqrt{33}=$
28 $\sqrt{20000}=$
29 $\sqrt{90000}=$
30 $\sqrt{1200000}=$
この動画を見る
1 $\sqrt{8}=$
2 $\sqrt{9}=$
3 $\sqrt{12}=$
4 $\sqrt{6}=$
5 $\sqrt{20}=$
6 $\sqrt{4}=$
7 $\sqrt{18}=$
8 $\sqrt{32}=$
9 $\sqrt{15}=$
10 $\sqrt{24}=$
11 $\sqrt{100}=$
12 $\sqrt{40}=$
13 $\sqrt{25}=$
14 $\sqrt{45}=$
15 $\sqrt{30}=$
16 $\sqrt{600}=$
17 $\sqrt{16}=$
18 $\sqrt{50}=$
19 $\sqrt{28}=$
20 $\sqrt{72}=$
21 $\sqrt{56}=$
22 $\sqrt{38}=$
23 $\sqrt{75}=$
24 $\sqrt{1000}=$
25 $\sqrt{80}=$
26 $\sqrt{98}=$
27 $\sqrt{33}=$
28 $\sqrt{20000}=$
29 $\sqrt{90000}=$
30 $\sqrt{1200000}=$
【高校受験対策】数学-死守35

単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#1次関数#平行と合同#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守35
①$6a \div -(\frac{3}{2})$
➁$9-(-15)\div3$
③$\sqrt{54}+4\sqrt{6}$
④$4x^2 \times -\frac{5}{6}xy$
⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$
⑥
$2x+5y=3$
$x-3y=7$
⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。
⑧2次方程式$x^2+3x-0$を解きなさい
⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。
⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。
⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。
⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。
⑬
袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。
⑭
底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
この動画を見る
高校受験対策・死守35
①$6a \div -(\frac{3}{2})$
➁$9-(-15)\div3$
③$\sqrt{54}+4\sqrt{6}$
④$4x^2 \times -\frac{5}{6}xy$
⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$
⑥
$2x+5y=3$
$x-3y=7$
⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。
⑧2次方程式$x^2+3x-0$を解きなさい
⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。
⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。
⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。
⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。
⑬
袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。
⑭
底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
【高校受験対策】数学-関数38

単元:
#数学(中学生)#中2数学#1次関数#平行と合同
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数38
Q.
右の図で、直線$l$は関数$y=\frac{1}{2}x+6$のグラフです。点$A$・点$B$は直線$l$上の点で、点$A$の座標は$(-2,5)$、点$B$の座標は$(4,8)$です。 このとき次の各問に答えなさい。
①2点、$o,A$を通る直線の傾きを求めなさい。
点$P$は$x$軸上の$x>0$の部分にあり、$△APB$の面積は$26cm^2$です。
②点$P$の座標を求めなさい。
③点$P$を通り、$△APB$の面積を2等分する直線の式を求めなさい。
この動画を見る
高校受験対策・関数38
Q.
右の図で、直線$l$は関数$y=\frac{1}{2}x+6$のグラフです。点$A$・点$B$は直線$l$上の点で、点$A$の座標は$(-2,5)$、点$B$の座標は$(4,8)$です。 このとき次の各問に答えなさい。
①2点、$o,A$を通る直線の傾きを求めなさい。
点$P$は$x$軸上の$x>0$の部分にあり、$△APB$の面積は$26cm^2$です。
②点$P$の座標を求めなさい。
③点$P$を通り、$△APB$の面積を2等分する直線の式を求めなさい。
【高校受験対策】数学-死守34

単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
【高校受験対策】数学-関数37(③)

単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数37
Q.
右の図において、直線①は関数$y=x+6$のグラフであり、曲線②は関数$y=ax^2$のグラフである。 2点、A・Bはともに直線①と曲線②との交点で、点Aの$x$座標は$-3$、 点Bの$x$座標は$6$であり、点Cは直線①と$y$軸との交点である。
また、原点を$o$とするとき、点Dは$y$軸上の点で$CO:OD=6:7$であり、 その$y$座標は負である。
点Eは線分AD上の点でAE=EDである。 さらに点Fは$x$軸上の点で、線分BFは$y$軸に平行である。 このとき次の問いに答えなさい。
①曲線②の式$y=ax^2$の$a$の値を求めなさい。
➁直線EFの式を求めなさい。
③線分AFと線分BOとの交点をGとするとき、三角形AGBと三角形DFGの曲積の比を最も簡単な整数の比で表しなさい。
この動画を見る
高校受験対策・関数37
Q.
右の図において、直線①は関数$y=x+6$のグラフであり、曲線②は関数$y=ax^2$のグラフである。 2点、A・Bはともに直線①と曲線②との交点で、点Aの$x$座標は$-3$、 点Bの$x$座標は$6$であり、点Cは直線①と$y$軸との交点である。
また、原点を$o$とするとき、点Dは$y$軸上の点で$CO:OD=6:7$であり、 その$y$座標は負である。
点Eは線分AD上の点でAE=EDである。 さらに点Fは$x$軸上の点で、線分BFは$y$軸に平行である。 このとき次の問いに答えなさい。
①曲線②の式$y=ax^2$の$a$の値を求めなさい。
➁直線EFの式を求めなさい。
③線分AFと線分BOとの交点をGとするとき、三角形AGBと三角形DFGの曲積の比を最も簡単な整数の比で表しなさい。
【高校受験対策】数学-図形22/後編

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形22
Q.
右の図1のような、$\angle BAD \gt 90°$、$AB \gt AD$の平行四辺形$ABCD$があります。 点$E$は辺$CD$上の点で、$\angle BAE =\angle CDA$です。
このとき次の各問に答えなさい。
①$△ABEと△DCA$が合同であることを証明しなさい。
➁$\angle BAC = 40°$、$\angle DAE = 50°$のとき、$\angle CBE$、$\angle AEB$の大きさをそれぞれ求めなさい。
③
図2のように、図1において、線分$AE$の延長と辺$BC$の延長との交点を$F$とし、辺$AB$と線分$BF$をとなりあう2辺とする平行四辺形$ABFG$をつくります。点$E$を通り線分$BF$に平行な直線をひき、辺$AB$、線分$GF$との交点をそれぞれ$P,Q$とします。また、点$D$から線分$AE$に垂線をひき、その交点を$H$とします。
$△ACE$の面積が$30cm^2$ で、$DH=8cm$のとき、線分$EQ$の長さを求めなさい.
この動画を見る
高校受験対策・図形22
Q.
右の図1のような、$\angle BAD \gt 90°$、$AB \gt AD$の平行四辺形$ABCD$があります。 点$E$は辺$CD$上の点で、$\angle BAE =\angle CDA$です。
このとき次の各問に答えなさい。
①$△ABEと△DCA$が合同であることを証明しなさい。
➁$\angle BAC = 40°$、$\angle DAE = 50°$のとき、$\angle CBE$、$\angle AEB$の大きさをそれぞれ求めなさい。
③
図2のように、図1において、線分$AE$の延長と辺$BC$の延長との交点を$F$とし、辺$AB$と線分$BF$をとなりあう2辺とする平行四辺形$ABFG$をつくります。点$E$を通り線分$BF$に平行な直線をひき、辺$AB$、線分$GF$との交点をそれぞれ$P,Q$とします。また、点$D$から線分$AE$に垂線をひき、その交点を$H$とします。
$△ACE$の面積が$30cm^2$ で、$DH=8cm$のとき、線分$EQ$の長さを求めなさい.
【高校受験対策】数学-図形22/前編

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形22
Q.
右の図1のような、$ \angle BAD \gt 90°$、$AB \gt AD$の平行四辺形$ABCD$があります。 点$E$は辺$CD$上の点で$\angle BAE= \angle CDA$です。
このとき次の各問に答えなさい。
①$△ABEと△DCA$が合同であることを証明しなさい。
➁$\angle BAC= 40°$、$\angle DAE= 50°$のとき、$\angle CBE$、$\angle AEB$の大きさをそれぞれ求めなさい。
③図2のように、図1において線分$AE$の延長と辺$BC$の延長との交点を$F$とし、辺$AB$と線分$BF$をとなりあう2辺とする平行四辺形$ABFG$を作ります。
点$E$を通り線分$BF$に平行な直線をひき、辺$AB$、線分$GF$との交点をそれぞれ$P,Q$とします。
また、点$D$から線分AEに垂線をひきその交点を$H$とます。
$△ACE$の面積が$30cm^2$で$DH=8cm$のとき、線分$EQ$の長さを求めなさい。
この動画を見る
高校受験対策・図形22
Q.
右の図1のような、$ \angle BAD \gt 90°$、$AB \gt AD$の平行四辺形$ABCD$があります。 点$E$は辺$CD$上の点で$\angle BAE= \angle CDA$です。
このとき次の各問に答えなさい。
①$△ABEと△DCA$が合同であることを証明しなさい。
➁$\angle BAC= 40°$、$\angle DAE= 50°$のとき、$\angle CBE$、$\angle AEB$の大きさをそれぞれ求めなさい。
③図2のように、図1において線分$AE$の延長と辺$BC$の延長との交点を$F$とし、辺$AB$と線分$BF$をとなりあう2辺とする平行四辺形$ABFG$を作ります。
点$E$を通り線分$BF$に平行な直線をひき、辺$AB$、線分$GF$との交点をそれぞれ$P,Q$とします。
また、点$D$から線分AEに垂線をひきその交点を$H$とます。
$△ACE$の面積が$30cm^2$で$DH=8cm$のとき、線分$EQ$の長さを求めなさい。
【高校受験対策】数学-死守33

単元:
#数学(中学生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守33
①$5-(-3)$
➁$6-5 \times (-2)$
③$4x-7x$
④$(2x+7y)-4(x-y)$
⑤$18a^3 \div\frac{2}{3}a$
⑥$\sqrt{75}-\sqrt{27}$
⑦$(2x+3)(2x-3)$を展開しなさい
⑧$x^2+6x-8$を因数分解しなさい
⑨2次方程式$(x-3)^2=2$を解きなさい
➉$y$は$x$に比例し、$x=3$のとき$y=-15$である。$y$を$x$の式で表しなさい。
⑪右の図の直角三角形ABCにおいて、辺ACの長さを求めなさい。
⑫大小2個のさいころを同時に投げるとき、出た目の和が8となる確率を求めなさい
⑬右の図の四角形ABCDと四角形EFGHは相似であり、その相似比は$2:3$である。
四角形ABCDの面積が$20cm^2$であるとき、四角形EFGHの面積を求めなさい。
⑭関数$y=ax^2$において、$x$の値が1から3まで増加するときの変化の割合が$2$であるとき、 $a$の値を求めなさい。
⑮右の図は、あるクラスの生徒20人について、1学期中に 読んだ本の冊数をヒストグラムにまとめたものである。
次のア~エのうち、この図から読み取れることとして正しいものを1つ選び、記号で答えなさい。
ア:生徒が読んだ冊数の範囲は5冊である
イ:生徒が読んだ冊数の最頻値は27.5冊である
ウ:度数が最も大きい階級の相対度数は0.3である
エ:度数が最も小さい階の階値は2.5冊である
この動画を見る
高校受験対策・死守33
①$5-(-3)$
➁$6-5 \times (-2)$
③$4x-7x$
④$(2x+7y)-4(x-y)$
⑤$18a^3 \div\frac{2}{3}a$
⑥$\sqrt{75}-\sqrt{27}$
⑦$(2x+3)(2x-3)$を展開しなさい
⑧$x^2+6x-8$を因数分解しなさい
⑨2次方程式$(x-3)^2=2$を解きなさい
➉$y$は$x$に比例し、$x=3$のとき$y=-15$である。$y$を$x$の式で表しなさい。
⑪右の図の直角三角形ABCにおいて、辺ACの長さを求めなさい。
⑫大小2個のさいころを同時に投げるとき、出た目の和が8となる確率を求めなさい
⑬右の図の四角形ABCDと四角形EFGHは相似であり、その相似比は$2:3$である。
四角形ABCDの面積が$20cm^2$であるとき、四角形EFGHの面積を求めなさい。
⑭関数$y=ax^2$において、$x$の値が1から3まで増加するときの変化の割合が$2$であるとき、 $a$の値を求めなさい。
⑮右の図は、あるクラスの生徒20人について、1学期中に 読んだ本の冊数をヒストグラムにまとめたものである。
次のア~エのうち、この図から読み取れることとして正しいものを1つ選び、記号で答えなさい。
ア:生徒が読んだ冊数の範囲は5冊である
イ:生徒が読んだ冊数の最頻値は27.5冊である
ウ:度数が最も大きい階級の相対度数は0.3である
エ:度数が最も小さい階の階値は2.5冊である
【高校受験対策】数学-関数36

単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数36
Q.
右の図で曲線は関数$y=x^2$のグラフです。2点A・Bは、$x>0$の部分にあり、 それぞれの$y$座標は$1,16$です。また、点Pは$y$軸上の$1 \lt y \lt 16$の部分にあります。
次の各問に答えなさい。
①2点A、Bの座標をそれぞれ求めなさい。
②関数$y=x^2$で、$x$の変域が$-3 \leqq x \leqq 2$のとき、$y$の変域を求めなさい。
③△ABPの面積が$14cm^2$のとき、点Pの座標を求めなさい。
ただし、座標軸の単位の長さを$1cm$とします。
この動画を見る
高校受験対策・関数36
Q.
右の図で曲線は関数$y=x^2$のグラフです。2点A・Bは、$x>0$の部分にあり、 それぞれの$y$座標は$1,16$です。また、点Pは$y$軸上の$1 \lt y \lt 16$の部分にあります。
次の各問に答えなさい。
①2点A、Bの座標をそれぞれ求めなさい。
②関数$y=x^2$で、$x$の変域が$-3 \leqq x \leqq 2$のとき、$y$の変域を求めなさい。
③△ABPの面積が$14cm^2$のとき、点Pの座標を求めなさい。
ただし、座標軸の単位の長さを$1cm$とします。
【高校受験対策】数学-図形21/後編

単元:
#数学(中学生)#中2数学#平行と合同
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21
Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$\angle APQ=90°$です。
このとき、次の各問に答えなさい。
①$△APQ$と$△CDQ$が合同であることを証明しなさい。
②$\angle PAQ=52°$のとき、$\angle PQC$の大きさを求めなさい。
③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る
高校受験対策・図形21
Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$\angle APQ=90°$です。
このとき、次の各問に答えなさい。
①$△APQ$と$△CDQ$が合同であることを証明しなさい。
②$\angle PAQ=52°$のとき、$\angle PQC$の大きさを求めなさい。
③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
【高校受験対策】数学-図形21/前編

単元:
#数学(中学生)#中2数学#平行と合同
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21
Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$∠APQ=90°$です。
このとき、次の各問に答えなさい。
①$△APQ$と$△CDQ$が合同であることを証明しなさい。
②$\angle PAQ=52°$のとき$\angle PQC$の大きさを求めなさい。
③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る
高校受験対策・図形21
Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$∠APQ=90°$です。
このとき、次の各問に答えなさい。
①$△APQ$と$△CDQ$が合同であることを証明しなさい。
②$\angle PAQ=52°$のとき$\angle PQC$の大きさを求めなさい。
③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
【高校受験対策/数学】関数35

単元:
#数学(中学生)#中2数学#1次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数35
Q.
右の図のように、3点、$A(0,6)$、$B(-2,2)$、$C(2,-2)$があります。
直線$l$は2点$A,B$を通る直線です。直線$m$は2点$B,C$を通る直線で、原点$o$も通っています。
このとき、次の各問に答えなさい。
①直線$l$の式を求めなさい。
②$△ABC$の面積を求めなさい。 ただし、座標軸の単位の長さを1cmとする。
③$y$軸と平行な直線$x=6$をひき、直線$l$との交点を$D$、 直線$m$との交点を$E$とします。
いま線分$DE$上に点$P$をとります。四角形$ABCP$の間の長さが最小になるときの点$P$の座標を求めなさい。
この動画を見る
高校受験対策・関数35
Q.
右の図のように、3点、$A(0,6)$、$B(-2,2)$、$C(2,-2)$があります。
直線$l$は2点$A,B$を通る直線です。直線$m$は2点$B,C$を通る直線で、原点$o$も通っています。
このとき、次の各問に答えなさい。
①直線$l$の式を求めなさい。
②$△ABC$の面積を求めなさい。 ただし、座標軸の単位の長さを1cmとする。
③$y$軸と平行な直線$x=6$をひき、直線$l$との交点を$D$、 直線$m$との交点を$E$とします。
いま線分$DE$上に点$P$をとります。四角形$ABCP$の間の長さが最小になるときの点$P$の座標を求めなさい。
【数学】0で割れると成り立つ不思議な世界

単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
0で割れると成り立つ不思議な世界についての動画です
この動画を見る
0で割れると成り立つ不思議な世界についての動画です
福田の一夜漬け数学〜図形と方程式〜円の方程式(3)直線と円の位置関係、高校2年生

単元:
#数Ⅱ#円#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
この動画を見る
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

単元:
#中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n}$$ \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n}$$ \geqq \sqrt[n]{a_1a_2\cdots a_n}$
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

単元:
#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
灘中 中学入試問題に挑戦

単元:
#算数(中学受験)#中3数学#式の計算(展開、因数分解)#灘中学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
この動画を見る
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
質問に対する返答動画です。円の性質、三平方の定理、計算の工夫、

単元:
#数学(中学生)#中3数学#円#三平方の定理
指導講師:
鈴木貫太郎
問題文全文(内容文):
右の図のように、半径2の外接する2円A,Bが半径5の円Oに内接している。
2円A,Bに外接する円Oに内接する円Cの半径を求めよ。
*図は動画内参照
この動画を見る
右の図のように、半径2の外接する2円A,Bが半径5の円Oに内接している。
2円A,Bに外接する円Oに内接する円Cの半径を求めよ。
*図は動画内参照
【テスト対策 中2】6章-5

単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①赤玉2個と白玉4個が入っている袋から、同時に2個取り出すとき、
少なくとも1個が赤玉である確率を求めよ。
②赤玉3個、白玉1個、青玉1個が入っている袋から、同時に2個取り出すとき、
2個の玉の色が異なる確率を求めよ。
③袋Aには赤玉2個と白玉3個、袋Bには赤玉3個と白玉1個が入っている。
それぞれの袋から1個ずつ取り出すとき、異なる色の玉が取り出される確率を求めよ。
この動画を見る
①赤玉2個と白玉4個が入っている袋から、同時に2個取り出すとき、
少なくとも1個が赤玉である確率を求めよ。
②赤玉3個、白玉1個、青玉1個が入っている袋から、同時に2個取り出すとき、
2個の玉の色が異なる確率を求めよ。
③袋Aには赤玉2個と白玉3個、袋Bには赤玉3個と白玉1個が入っている。
それぞれの袋から1個ずつ取り出すとき、異なる色の玉が取り出される確率を求めよ。
球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します

単元:
#数学(中学生)#中1数学#数Ⅱ#空間図形#微分法と積分法#面積、体積#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
この動画を見る
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
【テスト対策 中2】6章-4

単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①当たりが3本入った5本のくじがある。
このくじを$A、B$の2人がこの順に1本ずつ引くとき
2人とも当たりを引く確率を求めなさい。
ただし、引いたくじは戻さないものとする。
◎当たりが4本入った10本のくじについて次の問いに答えなさい。
引いたくじは戻さないものとする。
②A君が同時に2本引くとき、2本ともはずれを引く確率を求めなさい。
③A君が同時に2本引き、そのあとにBさんが1本引くとき、
Bさんだけが当たりを引く確率を求めなさい。
この動画を見る
①当たりが3本入った5本のくじがある。
このくじを$A、B$の2人がこの順に1本ずつ引くとき
2人とも当たりを引く確率を求めなさい。
ただし、引いたくじは戻さないものとする。
◎当たりが4本入った10本のくじについて次の問いに答えなさい。
引いたくじは戻さないものとする。
②A君が同時に2本引くとき、2本ともはずれを引く確率を求めなさい。
③A君が同時に2本引き、そのあとにBさんが1本引くとき、
Bさんだけが当たりを引く確率を求めなさい。
ご質問に対する返答動画です。円の面積はなぜπr^2

【テスト対策 中2】6章-3

単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①大小2個のさいころを同時に投げるとき、出る目の数の積が3の倍数になる確率
②大小2個のさいころを同時に投げるとき、少なくとも1個は偶数の目が出る確率
③大中小3個のさいころを同時に投げるとき、少なくとも1個は偶数の目が出る確率
この動画を見る
①大小2個のさいころを同時に投げるとき、出る目の数の積が3の倍数になる確率
②大小2個のさいころを同時に投げるとき、少なくとも1個は偶数の目が出る確率
③大中小3個のさいころを同時に投げるとき、少なくとも1個は偶数の目が出る確率
【テスト対策 中2】6章-2

単元:
#数学(中学生)#中2数学#確率#場合の数#場合の数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$A,B,C,D,E$の5人が1列に並ぶ。
$A$と$B$が端になるようにするとき、並び方は何通りあるか求めなさい。
②さいころ$A$の出る目の数を$a$、さいころ$B$の出る目の数を$b$とする。
$A,B$を同時に投げるとき、$\dfrac{b}{a}$の値が整数になるのは
何通りあるか求めなさい。
この動画を見る
①$A,B,C,D,E$の5人が1列に並ぶ。
$A$と$B$が端になるようにするとき、並び方は何通りあるか求めなさい。
②さいころ$A$の出る目の数を$a$、さいころ$B$の出る目の数を$b$とする。
$A,B$を同時に投げるとき、$\dfrac{b}{a}$の値が整数になるのは
何通りあるか求めなさい。
【テスト対策 中2】6章-1

単元:
#数学(中学生)#中2数学#確率#場合の数#場合の数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから2枚取り出して
2桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。
②$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから3枚取り出して
3桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。
図は動画内参照
この動画を見る
①$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから2枚取り出して
2桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。
②$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから3枚取り出して
3桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。
図は動画内参照
【テスト対策 中3】7章-6

単元:
#数学(中学生)#中3数学#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のような、1辺の長さが$6cm$の立方体がある。
頂点$F$から対角線$AG$にひいた垂線と対角線$AG$の交点を$P$とするとき、
次の問いに答えなさい。
①対角線$AG$の長さを求めなさい。
②線分$FP$の長さを求めなさい。
③$△AFP$の面積を求めなさい。
図は動画内参照
この動画を見る
右の図のような、1辺の長さが$6cm$の立方体がある。
頂点$F$から対角線$AG$にひいた垂線と対角線$AG$の交点を$P$とするとき、
次の問いに答えなさい。
①対角線$AG$の長さを求めなさい。
②線分$FP$の長さを求めなさい。
③$△AFP$の面積を求めなさい。
図は動画内参照
【テスト対策 中3】7章-5

単元:
#数学(中学生)#中3数学#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図は、 $AB = 4cm 、 AD = 2cm 、AE=5cm$の直方体である。
$I$は、直線$CE$上にあって、$C$について$E$と反対側にある点であり、
$EI = 10cm$ある。
$J$は、$I$から直線$EG$にひいた垂線と直線$EG$との交点である。
このとき、次の問いに答えなさい。
①線分$CE$の長さを求めなさい。
②$△CEG$の面積を求めなさい。
③線分$IJ$の長さを求めなさい。
図は動画内参照
この動画を見る
右の図は、 $AB = 4cm 、 AD = 2cm 、AE=5cm$の直方体である。
$I$は、直線$CE$上にあって、$C$について$E$と反対側にある点であり、
$EI = 10cm$ある。
$J$は、$I$から直線$EG$にひいた垂線と直線$EG$との交点である。
このとき、次の問いに答えなさい。
①線分$CE$の長さを求めなさい。
②$△CEG$の面積を求めなさい。
③線分$IJ$の長さを求めなさい。
図は動画内参照
【テスト対策 中3】7章-4

単元:
#数学(中学生)#中3数学#2次関数#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように、2つの関数$y =\dfrac{1}{4}x^2$と、$y=\dfrac{1}{2}x+6$が
2点$A、B$で交わっている。
原点$O$から$y=\dfrac{1}{2}x+6$に垂線$OH$をひく。
点$A$の$x$座標が$-4$のとき、次の問いに答えなさい。
①点$A$の座標を求めなさい。
②点$B$の座標を求めなさい。
③線分$AB$の長さを求めなさい。
④線分$OH$の長さを求めなさい。
図は動画内参照
この動画を見る
右の図のように、2つの関数$y =\dfrac{1}{4}x^2$と、$y=\dfrac{1}{2}x+6$が
2点$A、B$で交わっている。
原点$O$から$y=\dfrac{1}{2}x+6$に垂線$OH$をひく。
点$A$の$x$座標が$-4$のとき、次の問いに答えなさい。
①点$A$の座標を求めなさい。
②点$B$の座標を求めなさい。
③線分$AB$の長さを求めなさい。
④線分$OH$の長さを求めなさい。
図は動画内参照
