4S数学 - 質問解決D.B.(データベース) - Page 6

4S数学

【数C】【複素数平面】複素数と図形12 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
異なる4つの複素数α、β、γ、δを表す点を
それぞれA,B,C,Dとする。2つの等式
α+γ=β+δ δーα=i(βーα)
が成り立つとき、四角形ABCD
は正方形であることを証明せよ。
この動画を見る 

【数C】【複素数平面】複素数と図形11 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
異なる3つの複素数α、β、γの間に、次の等式が成り立つとき、3点A(α)、B(β)、C(γ)を頂点とする△ABCの3つの角の大きさを求めよ。

(1)$\displaystyle \frac{γーα}{βーα}=\sqrt{3}i $
(2)$α+iβ=(1+i)γ$
この動画を見る 

【数C】【複素数平面】複素数と図形10 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる3点O(0)、A(α)、B(β)について、次の等式が成り立つとき、三角形OABはどのような三角形か。
(1)α²+β²=0
(2)α²-2αβ+2β²=0
この動画を見る 

【数C】【複素数平面】複素数と図形9 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる2点A,Bを表す複素数をそれぞれ
1+i、4+3iとする。線分ABを1辺とする正方形の
他の2つの頂点を表す複素数をそれぞれ求めよ。
この動画を見る 

【数C】【平面上のベクトル】ベクトルの内積1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2つのベクトル$\vec{ a }$ ,$\vec{ b }$のなす角θを求めよ。
(1) $| \vec{ a } |=2$ ,$|\vec{ b }|=1$ ,$|3\vec{ a }+2\vec{ b } |=2\sqrt{7}$
(2) $| \vec{ a } |=4$ ,$|2\vec{ a } -\vec{ b } |=7$ ,$(\vec{ a } +\vec{ b } )·(\vec{ b } -3\vec{ a } )=-43$
この動画を見る 

【数B】【数列】数学的帰納法4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
条件$a_1=3,{a_n}^2=(n+1)a_{n+1}+1$
によって定められる数列$\{a_n\}$がある。
(1) $a_2,a_3,a_4$を求めよ。
(2) 第$n$項$a_n$を推測して、
その結果を数学的帰納法によって証明せよ。
この動画を見る 

【数B】【数列】数学的帰納法3 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $n$は自然数とする。
$5^{n+1}+6^{2n-1}$は31で割り切れることを、
数学的帰納法によって証明せよ。
(2) $n$は2以上の自然数とする。
$2^{3n}-7n-1$は49で割り切れることを、
数学的帰納法によって証明せよ。
この動画を見る 

【数B】【数列】数学的帰納法2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
数学的帰納法によって次の不等式を証明せよ。
(1) $n$が自然数のとき$1^2+2^2+3^2+\cdots+n^2< \dfrac{(n+1)^3}3$
(2) $n$が4以上の自然数のとき$2^n>3n+1$
(3) $n$が3以上の自然数、$h>0$のとき$(1+h)^n> 1+nh^2$
この動画を見る 

【数B】【数列】数学的帰納法1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。数学的帰納法によって、次の等式を証明せよ。
(1) $1+2\cdot\dfrac32+\cdots+n(\dfrac32)^{n-1}=2(n-2)(\dfrac32)^n+4$
(2) $(n+1)(n+2)(n+3)\cdots(2n)=2^n\cdot1\cdot3\cdot5\cdots(2n-1)$
この動画を見る 

【数B】【数列】漸化式4 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
1) $a_1 = 1$, $\quad (n+1) a_{n+1} = n a_n$
(2) $a_1 = 1$, $n a_{n+1} = (n+1) a_n$
この動画を見る 

【数B】【数列】漸化式3 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
$a_1$ = $1$, $a_{n+1} = 2a_n + 3n $
この動画を見る 

【数B】【数列】漸化式2 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる
数列 $\{a_n\}$ の一般項を求めよ。
(1)$a_1 = 10$, $a_{n+1} = 2a_n + 2^{n+2}$
(2)$a_1 = 3$, $a_{n+1} = 6a_n + 3^{n+1}$
この動画を見る 

【数B】【数列】漸化式1 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列
$\{a_n\}$ の一般項を求めよ。
(1) $a_1 = 1$, $a_{n+1} = \frac{a_n}{a_n + 1}$
(2)$a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{2a_n + 3}$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】常用対数2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
10進法で表された数$12^{100}$を2進法で表したときの桁数を求めよ。
ただし, $log_{10}2=0.3010$, $log_{10}3=0.4771$とする。

$log_{10}1.4=0.416$, $log_{10}1.8=0.255$, $log_{10}2.1=0.322$とするとき,
$log_{10}2$, $log_{10}3$, $log_{10}7$の値を求めよ。
また, $log_{10}63$の値を求めよ。

次の問いに答えよ。
(1) $log_{2}3$が無理数であることを証明せよ。
(2) (1)を用いて$log_{2}6$が無理数であることを証明せよ。
(3) (2)を用いて$log_{6}4$が無理数であることを証明せよ。
この動画を見る 

【数Ⅱ】【指数関数と対数関数】常用対数1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$log_{10}2=0.3010$, $log_{10}3=0.4771$とする。
(1) $6^{20}$は何桁の整数か。
(2) $6^{20}$の最高位の数字を求めよ。

年利率5%, 1年ごとの複利で10万円を預金した時,
x年後の元利合計は$10(1.05)^x$万円となる。
元利合計が初めて15万円を超えるのは何年後か。
ただし, $log_{10}2=0.3010$, $log_{10}3=0.4771$,$ log_{10}7=0.8451$とする。

1枚で70%の花粉を除去できるフィルターがある。
99.99%より多くの花粉を一度に除去するには,
このフィルターは最低何枚必要か。ただし, $log_{10}3=0.4771$とする。
この動画を見る 

【数Ⅱ】【微分法と積分法】面積和の最小値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<t<1とする。放物線y=x²と直線lが点T(t,t²)で接している。このとき、放物線と直線l、x軸、直線x=1で囲まれた2つの図形の面積の和をSとする。Sの最小値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】面積の相等 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
0<a<1とする。曲線y=x³-x²と直線y=a²(x-1)で囲まれた2つの図形の面積が等しくなるような定数aを求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた図形の面積Sを求めよ。
(1)y=-x³+3x,y=x
(2)y=x³-6x²,y=x²
この動画を見る 

【数Ⅱ】【微分法と積分法】3次関数と接線で囲まれた図形の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=x³-5x²+5x+8と、その曲線上の点(3,5)のおける接線で囲まれた図形の面積Sを求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】軌跡と面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1辺の長さが1の正方形OABCがある。点Pを正方形OABCの周および内部を動く点とし、点Pから辺OAに下した垂線をPHとする。点PがCP=PHを満たしながら動くとき、点Pの描く曲線と辺OA,AB,COで囲まれた部分の図形の面積を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】面積の最小値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
この動画を見る 

【数Ⅱ】【微分法と積分法】面積から直線を求める ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点を通る直線と、曲線y=x²-2xで囲まれた図形の面積が$\frac{32}{3}$である。この直線の方程式を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】面積の2等分 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=2+x-x²とx軸で囲まれた図形の面積を、点(2,0)を通る直線lが2等分するとき、lの傾きを求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】面積が一定になることを示す ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=x²+4上の点Pにおける放物線の接線と放物線y=x²で囲まれた図形の面積は、点Pの選び方に関係なく一定であることを示せ。
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分の不等式の証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式
$\left( \int_{0}^{1} (x-a)(x-b) \,dx \right)^2 \leq \int_{0}^{1} (x-a)^2 \,dx \int_{0}^{1} (x-b)^2 \,dx$
を証明せよ。また、等号が成り立つのはどのような場合か。
ただし、$a, b$ は定数とする。
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分で表された関数3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0 \leq x \leq 4$ のとき、
関数 $f(x) = \int_{0}^{x} (t-1)(t-3) \,dt$
の最大値、最小値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分で表された関数2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-3}^{x} (t^2 - 1) \,dt$
のグラフをかけ。
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分で表された関数1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-1}^{x} (3t^2 - 4t + 1) \,dt$
が極値をとるときの $x$ の値を求めよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】積分を含む関数3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x) + \int_{0}^{x} g(t) \,dt = 3x^2 + 2x + 1$,
$\frac{d}{dx} f(x) = g(x) + 4x^2$
を満たす関数 $f(x)$, $g(x)$ を求めよ
この動画を見る 

【数Ⅱ】【微分法と積分法】積分を含む関数2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(0) = 0$, $f(1) = 1$ を満たす 2 次関数 $f(x)$ のうちで、
$\int_{0}^{1} (f(x))^2 \,dx$ を最小にするものを求めよ。
この動画を見る 
PAGE TOP