ハクシ高校【数学科】良問演習チャンネル - 質問解決D.B.(データベース) - Page 2

ハクシ高校【数学科】良問演習チャンネル

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

高校数学の基礎から、大学入試の難問に至るまでの幅広い問題の解説を行います!
みなさんの偏差値を40代から70まで上げていく、演習を意識したチャンネルです!
アウトプットの重要性を噛みしめながら手を動かしていきましょう☆

数学「大学入試良問集」【19−15 ガウス記号と極限・区分求積法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$x$を越えない最大の整数を$\lbrack x \rbrack$で表す。
$n$を正の整数とし、$a_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{\lbrack \sqrt{ 2n^2-k^2 } \rbrack}{n^2}$とおく。
このとき、$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
この動画を見る 

因数分解の全パターン③【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$2x^2-10xy-48y^2$
(2)$a^3+27b^3$
(3)$x^3+3x^2+3x+1$
(4)$(x^2-3x)(x^2-3x-2)-8$
(5)$xy-x-y+1$
(6)$2a^2b-3ab+a-2b-2$
(7)$x^2+5xy+5x+6y^2+11y+4$
(8)$2x^2-3xy-2y^2+x+3y-1$
(9)$x^4-5x^2+4$
(10)$x^4+x^2+1$
(11)$x^4-6x^2+1$
(12)$(x+1)(x+3)(x+5)(x+7)+15$
(13)$(a+b)c^2+(b+c)a^2+(c+a)b^2+2abc$
(14)$x^3+y^3+z^3-3xyz$
この動画を見る 

数学「大学入試良問集」【19−13媒介変数表示のグラフと面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。

(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【19−11 面積の極限とネイピア数】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
曲線$C:y=\displaystyle \frac{1}{x}(x \gt 0)$を考える。
また、$n=1,2,3,・・・$と正の実数$t$に対し、曲線$C_n:y=-\displaystyle \frac{n}{x}+t(x \gt 0)$を考える。
次の各問いに答えよ。

(1)
$C$と$C_n$が1点$P(a,b)$で交わり、$P$における$C$と$C_n$の接線が直行するとき、$a$と$t$を$n$を用いて表せ。

(2)
(1)のとき、曲線$C_n$と$P$における$C$の接線、および$x$軸とで囲まれる図形の面積$S_n$を求めよ。

(3)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
この動画を見る 

数学「大学入試良問集」【19−9 定積分と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{2x}{\pi} \leqq \sin\ x$

(2)
次の不等式が成り立つことを証明せよ。
$\displaystyle \int_{0}^{\pi}e^{-\sin\ x}dx \leqq \pi\left[ 1-\dfrac{ 1 }{ e } \right]$
この動画を見る 

数学「大学入試良問集」【19−7 三角関数と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$t=\tan\displaystyle \frac{x}{2}$とおく。
このとき、次の各問いに答えよ。

(1)
$\displaystyle \frac{dt}{dx}$を$t$を用いて表せ。

(2)
$\cos\ x$を$t$を用いて表せ。

(3)
曲線$y=\displaystyle \frac{1}{\cos\ x}$と2直線$x=0,x=\displaystyle \frac{\pi}{3}$および$x$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
この動画を見る 

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 

数学「大学入試良問集」【19−4 2曲線が接する条件】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。

ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
この動画を見る 

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−2 三角関数の面積の二等分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#京都府立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の不等式が定める図形を$D$とする。
$0 \leqq x \leqq \displaystyle \frac{\pi}{2},0 \leqq y \leqq \sin2x$
(1)
曲線$y=a\ \sin\ x$と$y=\sin2x$が$0 \lt x \lt \displaystyle \frac{\pi}{2}$で交わるような定数$a$の範囲を求めよ。

(2)
曲線$y=a\ \sin\ x$が図形$D$を面積の等しい2つの部分に分けるような定数$a$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−1 三角関数のグラフと面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \leqq x \leqq 2\pi$における2つの関数$y=\cos\ x$と$y=\sin2x$について、次の各問いに答えよ。
(1)2つの関数のグラフの交点の$x$座標をすべて求めよ。
(2)2つの関数のグラフの概形をかけ。
(3)2つの関数のグラフだけによって囲まれている部分の面積を求めよ。
この動画を見る 

数学「大学入試良問集」【18−12 絶対値を含む定積分の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
この動画を見る 

数学「大学入試良問集」【18−11 分数関数の極値と面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{x^2+ax+b}{x-1}$は$x=2$で極小値5をとる。
このとき、次の各問いに答えよ。
(1)$a,b$の値を求めよ。
(2)関数$y=f(x)$のグラフ上の$x=3$に対応する点における接線の方程式を求めよ。
(3)直線$x=2$、曲線$y=f(x)$および$(2)$で求めた接線で囲まれた部分の面積を求めよ。
この動画を見る 

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る 

数学「大学入試良問集」【18−9 定積分関数と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
この動画を見る 

数学「大学入試良問集」【18−8 微分係数の定義】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)

(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。

(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
この動画を見る 

数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
この動画を見る 

数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る 

数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【18−4 微分と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
この動画を見る 

数学「大学入試良問集」【18−3 n次導関数と漸化式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x \gt 0$に対し、$f(x)=\displaystyle \frac{log\ x}{x}$とする。
(1)
$n=1,2,・・・$に対し、$f(x)$の第$n$次導関数は、数列$\{a_n\},\{b_n\}$を用いて$f^{(n)}(x)=\displaystyle \frac{a_n+b_n log\ x}{x^{n+1}}$と表されることを示し、$a_n,b_n$に関する漸化式を求めよ。

(2)
$h_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{k}$とおく。
$h_n$を用いて$a_n,b_n$の一般項を求めよ。
この動画を見る 

数学「大学入試良問集」【18−2 斜めの漸近線とグラフ】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^3}{x^2-1}$とするとき、次の各問いに答えよ。
(1)
$f'(x)$および$f''(x)$を求めよ。

(2)
関数$y=f(x)$の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。

(3)
この曲線の漸近線の方程式を求めよ。
この動画を見る 

数学「大学入試良問集」【18−1三角関数の微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#日本女子大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{\sin\ x}{3+\cos\ x}$の最大値を最小値を求めよ。
この動画を見る 

【17−9 自然対数の底と極限】を宇宙一わかりやすく「数学大学入試良問集」

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上の整数とする。
平面上に$n+2$個の点$O,P_1,P_2・・・P_n$があり、次の2つの条件を満たしている。
①$\angle P_{k-1}OP_k=\displaystyle \frac{\pi}{n}(1 \leqq k \leqq n),\angle OP_{k-1}P_k=\angle OP_0P_1(2 \leqq k \leqq n)$

②線分$OP_0$の長さは1、線分$OP_1$の長さは$1+\displaystyle \frac{1}{n}$である。

線分$P_{k-1}P_k$の長さを$a_k$とし、$s_n=\displaystyle \sum_{k=1}^n a_k$とおくとき、$\displaystyle \lim_{ n \to \infty }s_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−8 不等式とハサミウチの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$h \gt 0$として、不等式$(1+h)^n \geqq 1+nh+\displaystyle \frac{n(n-1)}{2}h^2$がすべての自然数$n$について成り立つことを数学的帰納法を用いて説明せよ。

(2)
(1)の不等式を使って、$0 \lt x \lt 1$のとき、数列$\{nx^n\}$が$0$に収束することを示せ。

(3)
$0 \lt x \lt 1$のとき
無限級数$2x+4x^2+6x^3+・・・+2nx^n+・・・$の和を求めよ。
この動画を見る 

数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
この動画を見る 
PAGE TOP