福田次郎 - 質問解決D.B.(データベース) - Page 38

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (1)\ 関数f(x)に対する以下の条件(P)を考える。\\
(P): f(x) \gt 3を満たす5以上の自然数nが存在する。\\
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。\\
(\textrm{a})f(n) \leqq 3を満たす5以上の自然数nが存在する。\\
(\textrm{b})f(n) \gt 3を満たす5未満の自然数nが存在する。\\
(\textrm{c})f(n) \leqq 3を満たす5未満の自然数nが存在する。\\
(\textrm{d})nが5以上の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{e})nが5未満の自然数ならばf(n) \leqq 3が成り立つ。\\
(\textrm{f})nが5未満の自然数ならばf(n) \gt 3が成り立つ。\\
(\textrm{g})f(n) \gt 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{h})f(n) \leqq 3が5以上の全ての自然数nに対して成り立つ。\\
(\textrm{i})f(n) \leqq 3が5未満の全ての自然数nに対して成り立つ。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(2) 媒介変数表示の接線\\
\left\{
\begin{array}{1}
x=\theta-\sin\theta\\
y=1-\cos\theta
\end{array}
\right.             \\
\\
で表される曲線の\theta=\frac{3\pi}{2}のときの点Pにおける接線を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(7) 領域と最大最小(3)\\
x^2+y^2 \leqq 10, y \geqq 0 のとき、\\
2x-y\\
の最大値と最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校1年生052〜図形の計量(3)台形の対角線のなす角

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(3)\\
右のような台形ABCDがある。(※動画参照)\\
(1)面積を求めよ。\\
(2)AC,BDを求めよ。\\
(3)\sin\thetaを求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する\\
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC\\
と交わる点をRとする。このとき\\
\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }\\
である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系069〜接線(1)陰関数の接線

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 接線(1) 陰関数の定義\\
\\
曲線 \sqrt x+\sqrt y=1\\
\\
上の点P(\frac{1}{4},\ \frac{1}{4})における接線および\\
\\
法線の方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校2年生051〜領域(6)領域と最大最小(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(6) 領域と最大最小(2)\\
x \geqq 0, y \geqq 0, 3x+y \leqq 9, x+2y \leqq 8\\
のとき、\\
ax+y の最大値を\ a\ で表せ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 立方体OADB-CFGEを考える。0 \leqq x \leqq 1となる実数xに対し、\overrightarrow{ OP }=x\ \overrightarrow{ OG }と\\
なる点Pを考え、\angle APB=\thetaとおく。\\
\\
(1)x=0のとき、\theta=\boxed{\ \ し\ \ }\ である。また、x=1のとき、\theta=\boxed{\ \ す\ \ }\ である。\\
\\
\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }\ の選択肢\\
(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}\\
(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi \\
\\
(2)0 \lt x \lt 1の範囲で\theta=\frac{\pi}{2}となるxの値は、x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }} である。\\
\\
(3)y=\cos\thetaとおき、yをxの関数と考える。このとき、yをxで表せ。また、\\
0 \leqq x \leqq 1の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・\\
座標軸との共有点・極値・変曲点などを明らかにせよ。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校1年生051〜図形の計量(2)四角形の対角線と面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(2)\hspace{160pt}\\
四角形ABCDの対角線AC=x,\ BD=yのなす角を\thetaとするとき、\\
この四角形の面積をx,\ y,\ \thetaで表せ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}  
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系068〜微分(13)関数方程式

アイキャッチ画像
単元: #微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(13) 関数方程式\\
x \gt 0 で定義された微分可能な関数f(x)において、f(xy)=f(x)+f(y)\\
が正の数x,\ yに対して常に成り立ち、f'(1)=1とする。\\
\\
(1)f(1) を求めよ。\\
(2)f'(x)=\frac{1}{x} を示せ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の  (\textrm{b})K未満の  \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての  (\textrm{b})ある  \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1  \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ  \\(\textrm{b})成り立つような実数Kが存在する  \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1  (2)a=1  (3)a=4
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)(\textrm{i})不等式\\
\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}\\
を満たす自然数kは\ \boxed{\ \ ス\ \ }\ である。\\
(\textrm{ii})7^{35}は\ \boxed{\ \ セ\ \ }\ 桁の整数である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校1年生050〜図形の計量(1)内接四角形の面積

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(1)\\
AB=3,\ BC=5,\ CD=5,\ DA=6である\\
円に内接する四角形ABCDにおいて、\\
ACの長さ、四角形ABCDの面積Sを求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系067〜微分(12)微分の計算

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(12) 微分計算\\
\\
y=\sqrt[3]{\frac{2x+1}{x(x-2)^2}}\\
\\
を微分せよ。
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2021年経済学部第3問〜円と円の位置関係と共通接線

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 円C_1:x^2+y^2-r=0と円C_2:x^2-10x+y^2+21=0 について、\\
以下の問いに答えよ。ただし、rは正の定数とする。\\
\\
(1)円C_1と円C_2が接するとき、rの値を求めよ。\\
(2)r=1とする。円C_1の接線lが円C_2にも接しているとき、\\
lの方程式を求めよ。解答はy=ax+bの形で表せ。\\

\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校2年生049〜領域(4)命題と領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(4) 領域と命題\\
次の条件(\textrm{A}),\ (\textrm{B})は同値であることを示せ。\\
(\textrm{A})\ |x+y| \leqq 1\ かつ\ |x-y| \leqq 1\\
(\textrm{B})\ |x|+|y| \leqq 1       
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから\\
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて\\
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた\\
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。\\
\\
(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。\\
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。
\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校1年生049〜三角形への応用(6)正弦定理の捉え方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形への応用(6)\\
\triangle ABCにおいて、\\
\sin A:\sin B:\sin C=3:5:7\\
のとき、最も大きい角の大きさは?
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ 次の2つの等式を満たす関数f(x)を求めよ。\\
f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt\\
\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(11) 定義に従って(3)\\
f'(a)が存在するとき、\\
\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}\\
をa,f(a),f'(a)で表せ。
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ 次の条件によって定められる数列\left\{a_n\right\}の一般項を求めよ。\\
a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)
\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校2年生048〜領域(3)線分と放物線が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(3) 線分と放物線の関係\\
\\
2点A(1,\ 1),\ B(3,\ 6)を結ぶ線分AB\\
(端点を除く)が放物線y=x^2+ax+b\\
と共有点をもつとき(a,\ b)の存在する\\
領域を図示せよ。
\end{eqnarray}
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(4)〜2つのベクトルに垂直な単位ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 2つのベクトル\ \overrightarrow{ a }=(4,\ -2,\ 3),\ \overrightarrow{ b }=(-4,\ 5,\ -3)の両方に垂直な\\
単位ベクトルを全て求めよ。
\end{eqnarray}

2021中央大経済学部過去問
この動画を見る 

福田のわかった数学〜高校1年生048〜三角形への応用(5)三角形を解く

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形への応用(5)\\
\triangle ABCにおいて、a=2,\ b=2\sqrt2,\ A=30°\\
のとき、残りの辺と角の大きさを求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP