福田次郎
福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。
2023東京工業大学理系過去問
福田の数学〜東京大学2023年理系第3問〜円と放物線と切り取られる弦の長さ

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。
2023東京大学理系過去問
この動画を見る
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。
2023東京大学理系過去問
福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。
2023東京慈恵会医科大学医学部過去問
この動画を見る
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。
2023東京慈恵会医科大学医学部過去問
福田の数学〜東京大学2023年文系数学第1問〜解と係数の関係と最小値

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。
2023東京大学文系過去問
この動画を見る
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。
2023東京大学文系過去問
福田の数学〜東京工業大学2023年理系第2問〜不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 方程式
$(x^3-x)^2$$(y^3-y)$=86400
を満たす整数の組(x,y)をすべて求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{2}$ 方程式
$(x^3-x)^2$$(y^3-y)$=86400
を満たす整数の組(x,y)をすべて求めよ。
2023東京工業大学理系過去問
福田の数学〜東京大学2023年理系第2問〜隣どうしにならない順列と条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 黒玉3個、赤玉4個、白玉5個が入っている袋から玉を1個ずつ取り出し、取り出した玉を順に横一列に12個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。
(1)どの赤玉も隣り合わない確率pを求めよ。
(2)どの赤玉も隣り合わないとき、どの黒玉も隣り合わない条件付き確率qを求めよ。
2023東京大学理系過去問
この動画を見る
$\Large\boxed{2}$ 黒玉3個、赤玉4個、白玉5個が入っている袋から玉を1個ずつ取り出し、取り出した玉を順に横一列に12個すべて並べる。ただし、袋から個々の玉が取り出される確率は等しいものとする。
(1)どの赤玉も隣り合わない確率pを求めよ。
(2)どの赤玉も隣り合わないとき、どの黒玉も隣り合わない条件付き確率qを求めよ。
2023東京大学理系過去問
福田の数学〜東京大学2023年理系第1問〜定積分と不等式

単元:
#大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。
2023東京大学理系過去問
この動画を見る
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。
2023東京大学理系過去問
福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。
2023東京工業大学理系過去問
福田の数学〜東京工業大学2023年理系第1問〜定積分の値の評価

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。
2023東京工業大学理系過去問
この動画を見る
$\Large\boxed{1}$ 実数$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$の整数部分を求めよ。
2023東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。
2018神戸大学理系過去問
この動画を見る
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。
2018神戸大学理系過去問
福田の1.5倍速演習〜合格する重要問題091〜大阪大学2018年度理系第1問〜不等式の証明と関数の値域

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
この動画を見る
$\Large\boxed{1}$ 次の問に答えよ。
(1)x>0の範囲で不等式
x-$\frac{x^2}{2}$<$\log(1+x)$<$\frac{x}{\sqrt{1+x}}$
が成り立つことを示せ。
(2)xがx>0の範囲を動くとき、
y=$\frac{1}{\log(1+x)}$-$\frac{1}{x}$
のとりうる値の範囲を求めよ。
2018大阪大学理系過去問
福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。
2018名古屋大学理系過去問
この動画を見る
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。
2018名古屋大学理系過去問
福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。
2018東京工業大学理系過去問
この動画を見る
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。
2018東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大

単元:
#数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。
2018一橋大学文系過去問
この動画を見る
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。
2018一橋大学文系過去問
福田の1.5倍速演習〜合格する重要問題087〜一橋大学2018年度文系第3問〜サイコロの目の積がkとなる確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。
2018一橋大学文系過去問
この動画を見る
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。
2018一橋大学文系過去問
福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。
2018東北大学理系過去問
この動画を見る
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。
2018東北大学理系過去問
福田の1.5倍速演習〜合格する重要問題083〜東北大学2018年度理系第1問〜直線の通過範囲

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
この動画を見る
$\Large\boxed{1}$ xy平面上における2つの放物線C:y=$(x-a)^2+b$, D:y=$-x^2$を考える。
(1)CとDが異なる2点で交わり、その2交点のx座標の差が1となるように実数a,bが動くとき、Cの頂点(a, b)の軌跡を図示せよ。
(2)実数a, bが(1)の条件を満たしながら動くとき、CとDの2交点を結ぶ直線が通過する範囲を定め、図示せよ。
2018東北大学理系過去問
福田の1.5倍速演習〜合格する重要問題082〜北海道大学2018年度理系第5問〜不等式の証明と面積

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。
2018北海道大学理系過去問
この動画を見る
$\Large\boxed{5}$ 2つの関数
f(x)=$\cos x$, g(x)=$\displaystyle\sqrt{\frac{\pi^2}{2}-x^2-\frac{\pi}{2}}$
がある。
(1)0≦x≦$\frac{\pi}{2}$のとき、不等式$\frac{2}{\pi}x$≦$\sin x$が成り立つことを示せ。
(2)0≦x≦$\frac{\pi}{2}$のとき、不等式g(x)≦f(x)が成り立つことを示せ。
(3)0≦x≦$\frac{\pi}{2}$の範囲において、2つの曲線y=f(x), y=g(x)およびy軸が囲む部分の面積を求めよ。
2018北海道大学理系過去問
福田の1.5倍速演習〜合格する重要問題081〜北海道大学2018年度文系第3問〜確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 赤色、青色、黄色のサイコロが1つずつある。この3つのサイコロを同時に投げる。赤色、青色、黄色のサイコロの出た目の数をそれぞれR,B,Yとし、自然数s,t,uをs=100R+10B+Y, t=100B+10Y+R, u=100Y+10R+B で定める。
(1)s,t,uのうち少なくとも2つが500以上となる確率を求めよ。
(2)s>t>uとなる確率を求めよ。
2018北海道大学文系過去問
この動画を見る
$\Large\boxed{3}$ 赤色、青色、黄色のサイコロが1つずつある。この3つのサイコロを同時に投げる。赤色、青色、黄色のサイコロの出た目の数をそれぞれR,B,Yとし、自然数s,t,uをs=100R+10B+Y, t=100B+10Y+R, u=100Y+10R+B で定める。
(1)s,t,uのうち少なくとも2つが500以上となる確率を求めよ。
(2)s>t>uとなる確率を求めよ。
2018北海道大学文系過去問
福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。
2018京都大学理系過去問
この動画を見る
$\Large\boxed{5}$ 曲線y=$\log x$上の点A(t, $\log t$)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また$\left(\frac{du}{dt}, \frac{dv}{dt}\right)$を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ$L_1(r)$, $L_2(r)$とする。このとき、極限$\displaystyle\lim_{r \to +0}(L_1(r)-L_2(r))$を求めよ。
2018京都大学理系過去問
福田の1.5倍速演習〜合格する重要問題079〜京都大学2018年度理系第3問〜円に内接する四角形の4辺の積の最大

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。
2018京都大学理系過去問
この動画を見る
$\Large\boxed{3}$ αは0<α≦$\frac{\pi}{2}$を満たす定数とし、四角形ABCDに関する次の2つの条件を考える。
(i)四角形ABCDは半径1の円に内接する。
(ii)$\angle$ABC=$\angle$DAB=α
条件(i)(ii)を満たす四角形のなかで、4辺の長さの積
k=AB・BC・CD・DA
が最大となるものについて、kの値を求めよ。
2018京都大学理系過去問
福田の1.5倍速演習〜合格する重要問題078〜京都大学2018年度文理共通問題〜素数の性質

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n^3$-7$n$+9 が素数となるような整数$n$を全て求めよ。
2018京都大学文理過去問
この動画を見る
$\Large\boxed{2}$ $n^3$-7$n$+9 が素数となるような整数$n$を全て求めよ。
2018京都大学文理過去問
福田の数学〜2023年共通テスト速報〜数学IIB第3問確率分布〜正規分布と二項分布

単元:
#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師:
福田次郎
問題文全文(内容文):
第3問
以下の問題を解答するにあたっては、必要に応じて43ページの正規分布表を用いてもよい。
(1)ある生産地で生産されるピーマン全体を母集団とし、この母集団におけるピーマン1個の重さ(単位はg)を表す確率変数をXとする。mとσを正の実数とし、Xは正規分布N(m, $\sigma^2$)に従うとする。
(i)この母集団から1個のピーマンを無作為に抽出したとき、重さがm g以上である確率P(X≧m)は
P(X≧m)=P$\left(\frac{X-m}{\sigma}\geqq \boxed{\ \ ア\ \ }\right)$=$\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}$
である。
(ii)母集団から無作為に抽出された大きさnの標本$X_1$, $X_2$, ..., $X_n$の標本平均を$\bar{X}$とする。$\bar{X}$の平均(期待値)と標準偏差はそれぞれ
E($\bar{X}$)=$\boxed{\boxed{\ \ エ\ \ }}$, σ($\bar{X}$)=$\boxed{\boxed{\ \ オ\ \ }}$
となる。
n=400, 標本平均が30.0g, 標本の標準偏差が3.6gのとき、mの信頼度90%の信頼区間を次の方針で求めよう。
方針:Zを標準正規分布N(0,1)に従う確率変数として、P($-z_0 \leqq Z \leqq z_0$)=0.901 となる$z_0$を正規分布表から求める。この$z_0$を用いるとmの信頼度90.1%の信頼区間が求められるが、これを信頼度90%の信頼区間とみなして考える。
方針において、$z_0$=$\boxed{\ \ カ\ \ }$.$\boxed{\ \ キク\ \ }$である。
一般に、標本の大きさnが大きいときには、母標準偏差の代わりに、標本の標準偏差を用いてよいことが知られている。n=400は十分に大きいので、方針に基づくと、mの信頼度90%の信頼区間は$\boxed{\boxed{\ \ ケ\ \ }}$となる。
$\boxed{\boxed{\ \ エ\ \ }}, \boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪σ ①$\sigma^2$ ②$\frac{\sigma}{\sqrt n}$ ③$\frac{\sigma^2}{n}$
④m ⑤2m ⑥$m^2$ ⑦$\sqrt m$
⑧$\frac{\sigma}{n}$ ⑨$n\sigma $ⓐ$nm$ ⓑ$\frac{m}{n}$
$\boxed{\boxed{\ \ ケ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪28.6≦m≦31.4 ①28.7≦m≦31.3 ②28.9≦m≦31.1
③29.6≦m≦30.4 ④29.7≦m≦30.3 ⑤29.9≦m≦30.1
(2)(1)の確率変数Xにおいて、m=30.0, σ=3.6とした母集団から無作為にピーマンを1個ずつ抽出し、ピーマン2個を1組にしたものを袋に入れていく。このようにしてピーマン2個を1組にしたものを25袋作る。その際、1袋ずつの重さの分数を小さくするために、次のピーマン分類法を考える。
ピーマン分類法:無作為に抽出したいくつかのピーマンについて、重さが30.0g以下のときをSサイズ、30.0gを超えるときはLサイズと分類する。そして、分類されたピーマンからSサイズとLサイズのピーマンを一つずつ選び、ピーマン2個を1組とした袋を作る。
(i)ピーマンを無作為に50個抽出した時、ピーマン分類法で25袋作ることができる確率$p_0$を考えよう。無作為に1個抽出したピーマンがSサイズである確率は$\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。ピーマンを無作為に50個抽出したときのSサイズのピーマンの個数を表す確率変数を$U_0$とすると、$U_0$は二項分布$B\left(50, \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)$に従うので
$p_0$=${}_{50}C_{\boxed{シス}}×\left(\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)^{\boxed{シス}}×\left(1-\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)^{50-\boxed{シス}}$
となる。
$p_0$を計算すると、$p_0$=0.1122...となることから、ピーマンを無作為に50個抽出したとき、25袋作ることができる確率は0.11程度とわかる。
(ii)ピーマン分類法で25袋作ることができる確率が0.95以上となるようなピーマンの個数を考えよう。
kを自然数とし、ピーマンを無作為に(50+k)個抽出したとき、Sサイズのピーマンの個数を表す確率変数を$U_k$とすると、$U_k$は二項分布$B\left(50+k, \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)$に従う。
(50+k)は十分に大きいので、$U_k$は近似的に正規分布$N\left(\boxed{\boxed{\ \ セ\ \ }}, \boxed{\boxed{\ \ ソ\ \ }}\right)$に従い、$Y=\frac{U_k-\boxed{\boxed{\ \ セ\ \ }}}{\sqrt{\boxed{\boxed{\ \ ソ\ \ }}}}$とすると、Yは近似的に標準正規分布N(0,1)に従う。
よって、ピーマン分類法で、25袋作ることができる確率を$p_k$とすると
$p_k$=$P(25 \leqq U_k \leqq 25+k)$=$P\left(-\frac{\boxed{\boxed{\ \ タ\ \ }}}{\sqrt{50+k}} \leqq Y \leqq \frac{\boxed{\boxed{\ \ タ\ \ }}}{\sqrt{50+k}}\right)$
となる。
$\boxed{\boxed{\ \ タ\ \ }}$=a, $\sqrt{50+k}$=$\beta$とおく。
$p_k$≧0.95になるような$\frac{\alpha}{\beta}$について、正規分布表から$\frac{\alpha}{\beta}$≧1.96を満たせばよいことが分かる。ここでは
$\frac{\alpha}{\beta}$≧2 ...①
を満たす自然数kを考えることとする。①の両辺は正であるから、$\alpha^2$≧4$\beta^2$を満たす最小のkを$k_0$とすると、$k_0$=$\boxed{\ \ チツ\ \ }$であることがわかる。ただし、$\boxed{\ \ チツ\ \ }$の計算においては、$\sqrt{51}=7.14$を用いてもよい。
したがって、少なくとも(50+$\boxed{\ \ チツ\ \ }$)個のピーマンを抽出しておけば、ピーマン分類法で25袋作ることができる確率は0.95以上となる。
$\boxed{\boxed{\ \ セ\ \ }}$~$\boxed{\boxed{\ \ タ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪k ①2k ②3k ③$\frac{50+k}{2}$
④$\frac{25+k}{2}$ ⑤25+k ⑥$\frac{\sqrt{50+k}}{2}$ ⑦$\frac{50+k}{4}$
2023共通テスト過去問
この動画を見る
第3問
以下の問題を解答するにあたっては、必要に応じて43ページの正規分布表を用いてもよい。
(1)ある生産地で生産されるピーマン全体を母集団とし、この母集団におけるピーマン1個の重さ(単位はg)を表す確率変数をXとする。mとσを正の実数とし、Xは正規分布N(m, $\sigma^2$)に従うとする。
(i)この母集団から1個のピーマンを無作為に抽出したとき、重さがm g以上である確率P(X≧m)は
P(X≧m)=P$\left(\frac{X-m}{\sigma}\geqq \boxed{\ \ ア\ \ }\right)$=$\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}$
である。
(ii)母集団から無作為に抽出された大きさnの標本$X_1$, $X_2$, ..., $X_n$の標本平均を$\bar{X}$とする。$\bar{X}$の平均(期待値)と標準偏差はそれぞれ
E($\bar{X}$)=$\boxed{\boxed{\ \ エ\ \ }}$, σ($\bar{X}$)=$\boxed{\boxed{\ \ オ\ \ }}$
となる。
n=400, 標本平均が30.0g, 標本の標準偏差が3.6gのとき、mの信頼度90%の信頼区間を次の方針で求めよう。
方針:Zを標準正規分布N(0,1)に従う確率変数として、P($-z_0 \leqq Z \leqq z_0$)=0.901 となる$z_0$を正規分布表から求める。この$z_0$を用いるとmの信頼度90.1%の信頼区間が求められるが、これを信頼度90%の信頼区間とみなして考える。
方針において、$z_0$=$\boxed{\ \ カ\ \ }$.$\boxed{\ \ キク\ \ }$である。
一般に、標本の大きさnが大きいときには、母標準偏差の代わりに、標本の標準偏差を用いてよいことが知られている。n=400は十分に大きいので、方針に基づくと、mの信頼度90%の信頼区間は$\boxed{\boxed{\ \ ケ\ \ }}$となる。
$\boxed{\boxed{\ \ エ\ \ }}, \boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪σ ①$\sigma^2$ ②$\frac{\sigma}{\sqrt n}$ ③$\frac{\sigma^2}{n}$
④m ⑤2m ⑥$m^2$ ⑦$\sqrt m$
⑧$\frac{\sigma}{n}$ ⑨$n\sigma $ⓐ$nm$ ⓑ$\frac{m}{n}$
$\boxed{\boxed{\ \ ケ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪28.6≦m≦31.4 ①28.7≦m≦31.3 ②28.9≦m≦31.1
③29.6≦m≦30.4 ④29.7≦m≦30.3 ⑤29.9≦m≦30.1
(2)(1)の確率変数Xにおいて、m=30.0, σ=3.6とした母集団から無作為にピーマンを1個ずつ抽出し、ピーマン2個を1組にしたものを袋に入れていく。このようにしてピーマン2個を1組にしたものを25袋作る。その際、1袋ずつの重さの分数を小さくするために、次のピーマン分類法を考える。
ピーマン分類法:無作為に抽出したいくつかのピーマンについて、重さが30.0g以下のときをSサイズ、30.0gを超えるときはLサイズと分類する。そして、分類されたピーマンからSサイズとLサイズのピーマンを一つずつ選び、ピーマン2個を1組とした袋を作る。
(i)ピーマンを無作為に50個抽出した時、ピーマン分類法で25袋作ることができる確率$p_0$を考えよう。無作為に1個抽出したピーマンがSサイズである確率は$\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。ピーマンを無作為に50個抽出したときのSサイズのピーマンの個数を表す確率変数を$U_0$とすると、$U_0$は二項分布$B\left(50, \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)$に従うので
$p_0$=${}_{50}C_{\boxed{シス}}×\left(\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)^{\boxed{シス}}×\left(1-\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)^{50-\boxed{シス}}$
となる。
$p_0$を計算すると、$p_0$=0.1122...となることから、ピーマンを無作為に50個抽出したとき、25袋作ることができる確率は0.11程度とわかる。
(ii)ピーマン分類法で25袋作ることができる確率が0.95以上となるようなピーマンの個数を考えよう。
kを自然数とし、ピーマンを無作為に(50+k)個抽出したとき、Sサイズのピーマンの個数を表す確率変数を$U_k$とすると、$U_k$は二項分布$B\left(50+k, \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\right)$に従う。
(50+k)は十分に大きいので、$U_k$は近似的に正規分布$N\left(\boxed{\boxed{\ \ セ\ \ }}, \boxed{\boxed{\ \ ソ\ \ }}\right)$に従い、$Y=\frac{U_k-\boxed{\boxed{\ \ セ\ \ }}}{\sqrt{\boxed{\boxed{\ \ ソ\ \ }}}}$とすると、Yは近似的に標準正規分布N(0,1)に従う。
よって、ピーマン分類法で、25袋作ることができる確率を$p_k$とすると
$p_k$=$P(25 \leqq U_k \leqq 25+k)$=$P\left(-\frac{\boxed{\boxed{\ \ タ\ \ }}}{\sqrt{50+k}} \leqq Y \leqq \frac{\boxed{\boxed{\ \ タ\ \ }}}{\sqrt{50+k}}\right)$
となる。
$\boxed{\boxed{\ \ タ\ \ }}$=a, $\sqrt{50+k}$=$\beta$とおく。
$p_k$≧0.95になるような$\frac{\alpha}{\beta}$について、正規分布表から$\frac{\alpha}{\beta}$≧1.96を満たせばよいことが分かる。ここでは
$\frac{\alpha}{\beta}$≧2 ...①
を満たす自然数kを考えることとする。①の両辺は正であるから、$\alpha^2$≧4$\beta^2$を満たす最小のkを$k_0$とすると、$k_0$=$\boxed{\ \ チツ\ \ }$であることがわかる。ただし、$\boxed{\ \ チツ\ \ }$の計算においては、$\sqrt{51}=7.14$を用いてもよい。
したがって、少なくとも(50+$\boxed{\ \ チツ\ \ }$)個のピーマンを抽出しておけば、ピーマン分類法で25袋作ることができる確率は0.95以上となる。
$\boxed{\boxed{\ \ セ\ \ }}$~$\boxed{\boxed{\ \ タ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪k ①2k ②3k ③$\frac{50+k}{2}$
④$\frac{25+k}{2}$ ⑤25+k ⑥$\frac{\sqrt{50+k}}{2}$ ⑦$\frac{50+k}{4}$
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。
2018東京大学理系過去問
この動画を見る
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。
2018東京大学理系過去問
福田の1.5倍速演習〜合格する重要問題076〜東京大学2018年度理系第2問〜数列の項の大小とユークリッドの互除法

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
第2問
数列$a_1$, $a_2$, $\cdots$を
$a_n$=$\displaystyle\frac{{}_{2n+1}C_n}{n!}$ ($n$=1,2,...)
で定める。
(1)n≧2とする。$\frac{a_n}{a_{n-1}}$を既約分数$\frac{q_n}{p_n}$として表したときの分母$p_n$≧1と分子$q_n$を求めよ。
(2)$a_n$が整数となるn≧1をすべて求めよ。
2018東京大学理系過去問
この動画を見る
第2問
数列$a_1$, $a_2$, $\cdots$を
$a_n$=$\displaystyle\frac{{}_{2n+1}C_n}{n!}$ ($n$=1,2,...)
で定める。
(1)n≧2とする。$\frac{a_n}{a_{n-1}}$を既約分数$\frac{q_n}{p_n}$として表したときの分母$p_n$≧1と分子$q_n$を求めよ。
(2)$a_n$が整数となるn≧1をすべて求めよ。
2018東京大学理系過去問
福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
この動画を見る
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。
2020慶應義塾大学医学部過去問
福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。
2020慶應義塾大学理工学部過去問
この動画を見る
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。
2020慶應義塾大学理工学部過去問
福田の1.5倍速演習〜合格する重要問題101〜慶應義塾大学2020年度環境情報学部第1問(1)〜不定方程式の解

単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#平面上の曲線#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#加法定理とその応用#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)正の実数xとyが9$x^2$+16$y^2$=144 を満たしているとき、xyの最大値は$\boxed{\ \ アイ\ \ }$である。
2020慶應義塾大学環境情報学部過去問
この動画を見る
$\Large\boxed{1}$ (1)正の実数xとyが9$x^2$+16$y^2$=144 を満たしているとき、xyの最大値は$\boxed{\ \ アイ\ \ }$である。
2020慶應義塾大学環境情報学部過去問
福田の数学〜2023年共通テスト速報〜数学IIB第5問ベクトル〜三角錐をベクトルで考える

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師:
福田次郎
問題文全文(内容文):
第5問
三角錐PABCにおいて、辺BCの中点をMとおく。また、$\angle$PAB=$\angle$PACとし、この角度をθをおく。0°< θ < 90°とする。
(1)$\overrightarrow{AM}$は
$\overrightarrow{AM}$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\overrightarrow{AB}$+$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\overrightarrow{AC}$
と表せる。また
$\frac{\overrightarrow{AP}・\overrightarrow{AB}}{|\overrightarrow{AP}||\overrightarrow{AB}|}$=$\frac{\overrightarrow{AP}・\overrightarrow{AC}}{|\overrightarrow{AP}||\overrightarrow{AC}|}$=$\boxed{\boxed{\ \ オ\ \ }}$ ...①
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\sin \theta$ ①$\cos \theta$ ②$\tan \theta$
③$\frac{1}{\sin \theta}$ ④$\frac{1}{\cos \theta}$ ⑤$\frac{1}{\tan \theta}$
⑥$\sin\angle$BPC ⑦$\cos\angle$BPC ⑧$\tan\angle$BPC
(2)θ=45°とし、さらに
$|\overrightarrow{AP}|$=3√2, $|\overrightarrow{AB}|$=$|\overrightarrow{PB}|$=3, $|\overrightarrow{AC}|$=$|\overrightarrow{PC}|$=3
が成り立つ場合を考える。このとき
$\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$=$\boxed{\ \ カ\ \ }$
である。さらに、直線AM上の点Dが$\angle$APD=90°を満たしているとする。このとき、$\overrightarrow{AD}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$である。
(3)
$\overrightarrow{AQ}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$
で定まる点をQとおく。$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直である三角錐PABCはどのようなものかについて考えよう。例えば(2)の場合では、点Qは点Dと一致し、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
(i)$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であるとき、$\overrightarrow{PQ}$を$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AP}$を用いて表して考えると、$\boxed{\boxed{\ \ ク\ \ }}$が成り立つ。さらに①に注意すると、$\boxed{\boxed{\ \ ク\ \ }}$から$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つことがわかる。
したがって、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であれば、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つ。逆に、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立てば、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
$\boxed{\boxed{\ \ ク\ \ }}$の解答群
⓪$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AP}・\overrightarrow{AP}$
①$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AP}・\overrightarrow{AP}$
②$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AB}・\overrightarrow{AC}$
③$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AB}・\overrightarrow{AC}$
④$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=0
⑤$\overrightarrow{AP}・\overrightarrow{AB}$-$\overrightarrow{AP}・\overrightarrow{AC}$=0
$\boxed{\boxed{\ \ ケ\ \ }}$の解答群
⓪$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$\sqrt 2|\overrightarrow{BC}|$
①$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$2|\overrightarrow{BC}|$
②$|\overrightarrow{AB}|\sin\theta$+$|\overrightarrow{AC}|\sin\theta$=$|\overrightarrow{AP}|$
③$|\overrightarrow{AB}|\cos\theta$+$|\overrightarrow{AC}|\cos\theta$=$|\overrightarrow{AP}|$
④$|\overrightarrow{AB}|\sin\theta$=$|\overrightarrow{AC}|\sin\theta$=$2|\overrightarrow{AP}|$
⑤$|\overrightarrow{AB}|\cos\theta$=$|\overrightarrow{AC}|\cos\theta$=$2|\overrightarrow{AP}|$
(ii)kを正の実数とし
$k\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$
が成り立つとする。このとき、$\boxed{\boxed{\ \ コ\ \ }}$が成り立つ。
また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。
このとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ サ\ \ }}$であることと同値である。特にk=1のとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ シ\ \ }}$であることと同値である。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
⓪$k|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$ ①$|\overrightarrow{AB}|$=$k|\overrightarrow{AC}|$
②$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AB}|$ ③$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AC}|$
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪B'とC'がともに線分APの中点
①B'とC'が線分APをそれぞれ(k+1):1と1:(k+1)に内分する点
②B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
③B'とC'が線分APをそれぞれk:1と1:kに内分する点
④B'とC'が線分APをそれぞれ1:kとk:1に内分する点
⑤B'とC'がともに線分APをk:1に内分する点
⑥B'とC'がともに線分APを1:kに内分する点
$\boxed{\boxed{\ \ シ\ \ }}$の解答群
⓪$\triangle$PABと$\triangle$PACがともに正三角形
①$\triangle$PABと$\triangle$PACがそれぞれ$\angle$PBA=90°, $\angle$PCA=90°を満たす直角二等辺三角形
②$\triangle$PABと$\triangle$PACがそれぞれBP=BA, CP=CAを満たす二等辺三角形
③$\triangle$PABと$\triangle$PACが合同
④AP=BC
2023共通テスト過去問
この動画を見る
第5問
三角錐PABCにおいて、辺BCの中点をMとおく。また、$\angle$PAB=$\angle$PACとし、この角度をθをおく。0°< θ < 90°とする。
(1)$\overrightarrow{AM}$は
$\overrightarrow{AM}$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\overrightarrow{AB}$+$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\overrightarrow{AC}$
と表せる。また
$\frac{\overrightarrow{AP}・\overrightarrow{AB}}{|\overrightarrow{AP}||\overrightarrow{AB}|}$=$\frac{\overrightarrow{AP}・\overrightarrow{AC}}{|\overrightarrow{AP}||\overrightarrow{AC}|}$=$\boxed{\boxed{\ \ オ\ \ }}$ ...①
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\sin \theta$ ①$\cos \theta$ ②$\tan \theta$
③$\frac{1}{\sin \theta}$ ④$\frac{1}{\cos \theta}$ ⑤$\frac{1}{\tan \theta}$
⑥$\sin\angle$BPC ⑦$\cos\angle$BPC ⑧$\tan\angle$BPC
(2)θ=45°とし、さらに
$|\overrightarrow{AP}|$=3√2, $|\overrightarrow{AB}|$=$|\overrightarrow{PB}|$=3, $|\overrightarrow{AC}|$=$|\overrightarrow{PC}|$=3
が成り立つ場合を考える。このとき
$\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$=$\boxed{\ \ カ\ \ }$
である。さらに、直線AM上の点Dが$\angle$APD=90°を満たしているとする。このとき、$\overrightarrow{AD}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$である。
(3)
$\overrightarrow{AQ}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$
で定まる点をQとおく。$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直である三角錐PABCはどのようなものかについて考えよう。例えば(2)の場合では、点Qは点Dと一致し、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
(i)$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であるとき、$\overrightarrow{PQ}$を$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AP}$を用いて表して考えると、$\boxed{\boxed{\ \ ク\ \ }}$が成り立つ。さらに①に注意すると、$\boxed{\boxed{\ \ ク\ \ }}$から$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つことがわかる。
したがって、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であれば、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つ。逆に、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立てば、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
$\boxed{\boxed{\ \ ク\ \ }}$の解答群
⓪$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AP}・\overrightarrow{AP}$
①$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AP}・\overrightarrow{AP}$
②$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AB}・\overrightarrow{AC}$
③$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AB}・\overrightarrow{AC}$
④$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=0
⑤$\overrightarrow{AP}・\overrightarrow{AB}$-$\overrightarrow{AP}・\overrightarrow{AC}$=0
$\boxed{\boxed{\ \ ケ\ \ }}$の解答群
⓪$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$\sqrt 2|\overrightarrow{BC}|$
①$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$2|\overrightarrow{BC}|$
②$|\overrightarrow{AB}|\sin\theta$+$|\overrightarrow{AC}|\sin\theta$=$|\overrightarrow{AP}|$
③$|\overrightarrow{AB}|\cos\theta$+$|\overrightarrow{AC}|\cos\theta$=$|\overrightarrow{AP}|$
④$|\overrightarrow{AB}|\sin\theta$=$|\overrightarrow{AC}|\sin\theta$=$2|\overrightarrow{AP}|$
⑤$|\overrightarrow{AB}|\cos\theta$=$|\overrightarrow{AC}|\cos\theta$=$2|\overrightarrow{AP}|$
(ii)kを正の実数とし
$k\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$
が成り立つとする。このとき、$\boxed{\boxed{\ \ コ\ \ }}$が成り立つ。
また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。
このとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ サ\ \ }}$であることと同値である。特にk=1のとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ シ\ \ }}$であることと同値である。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
⓪$k|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$ ①$|\overrightarrow{AB}|$=$k|\overrightarrow{AC}|$
②$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AB}|$ ③$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AC}|$
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪B'とC'がともに線分APの中点
①B'とC'が線分APをそれぞれ(k+1):1と1:(k+1)に内分する点
②B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
③B'とC'が線分APをそれぞれk:1と1:kに内分する点
④B'とC'が線分APをそれぞれ1:kとk:1に内分する点
⑤B'とC'がともに線分APをk:1に内分する点
⑥B'とC'がともに線分APを1:kに内分する点
$\boxed{\boxed{\ \ シ\ \ }}$の解答群
⓪$\triangle$PABと$\triangle$PACがともに正三角形
①$\triangle$PABと$\triangle$PACがそれぞれ$\angle$PBA=90°, $\angle$PCA=90°を満たす直角二等辺三角形
②$\triangle$PABと$\triangle$PACがそれぞれBP=BA, CP=CAを満たす二等辺三角形
③$\triangle$PABと$\triangle$PACが合同
④AP=BC
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

単元:
#数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
この動画を見る
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
