福田次郎
福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田のわかった数学〜高校1年生010〜2次関数の最大最小(3)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(3)
$y=(x^2-2ax)^2+4(x^2-2ax)$
の最小値が$-4$となるような定数$a$
の値の範囲を求めよ。
この動画を見る
数学$\textrm{I}$ 2次関数の最大最小(3)
$y=(x^2-2ax)^2+4(x^2-2ax)$
の最小値が$-4$となるような定数$a$
の値の範囲を求めよ。
福田のわかった数学〜高校3年生理系003〜極限(3)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
福田のわかった数学〜高校2年生第9回〜高次方程式の有理数解

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
この動画を見る
数学$\textrm{II}$ 高次方程式
$a,b,c$を整数とするとき、3次方程式
$x^3+ax^2+bx+c=0$
が有理数解$s$をもつなら、$s$は整数である。
これを示せ。
福田のわかった数学〜高校1年生第9回〜2次関数の最大最小(2)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(2)
次の関数の最小値とそのときの$x$を求めよ。
(1)$y=x^4+4x^2-3$
(2)$y=(x^2-2x)^2+4(x^2-2x)-1$
この動画を見る
数学$\textrm{I}$ 2次関数の最大最小(2)
次の関数の最小値とそのときの$x$を求めよ。
(1)$y=x^4+4x^2-3$
(2)$y=(x^2-2x)^2+4(x^2-2x)-1$
福田のわかった数学〜高校3年生理系002〜極限(2)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(2)
次の命題で正しくないものは反例を示せ。
(1)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=+\infty $
$\to \displaystyle\lim_{n \to \infty}(a_n-b_n)=0$
(2)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=0 $
$\to \displaystyle\lim_{n \to \infty}a_nb_n=0$
(3)$0 \leqq a_n \lt 1 $
$\to \displaystyle\lim_{n \to \infty}(a_n)^n=0$
この動画を見る
数学$\textrm{III}$ 極限(2)
次の命題で正しくないものは反例を示せ。
(1)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=+\infty $
$\to \displaystyle\lim_{n \to \infty}(a_n-b_n)=0$
(2)$\displaystyle\lim_{n \to \infty}a_n=+\infty,\displaystyle\lim_{n \to \infty}b_n=0 $
$\to \displaystyle\lim_{n \to \infty}a_nb_n=0$
(3)$0 \leqq a_n \lt 1 $
$\to \displaystyle\lim_{n \to \infty}(a_n)^n=0$
福田のわかった数学〜高校2年生第8回〜相加相乗平均の関係

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a\gt0,b\gt0,c\gt0$のとき、次の最小値を求めよ。
(1)$(a+b+c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b}+\displaystyle \frac{1}{c}\right)$
(2)$(a+2b+4c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{4}{c}\right)$
この動画を見る
数学$\textrm{II}$ 相加相乗平均の関係
$a\gt0,b\gt0,c\gt0$のとき、次の最小値を求めよ。
(1)$(a+b+c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b}+\displaystyle \frac{1}{c}\right)$
(2)$(a+2b+4c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{4}{c}\right)$
福田のわかった数学〜高校1年生第8回〜2次関数の最大最小(1)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(1)
次の関数の最大最小を調べよ。
(1) $y=\displaystyle \frac{x^2+6x+6}{x^2+x+1}$ (2)$y=x-\sqrt x$
この動画を見る
数学$\textrm{I}$ 2次関数の最大最小(1)
次の関数の最大最小を調べよ。
(1) $y=\displaystyle \frac{x^2+6x+6}{x^2+x+1}$ (2)$y=x-\sqrt x$
福田のわかった数学〜高校3年生理系001〜極限(1)

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
福田のわかった数学〜高校2年生第7回〜2変数関数の最大最小

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2変数関数の最大最小
$x,y$が$0 \leqq x \leqq 1,0 \leqq y \leqq 1$を
満たして変化するときの2変数関数
$f(x,y)=5xy-2(x+y)+1$
の最大値$M,$最小値$m$を求めよ。
この動画を見る
数学$\textrm{II}$ 2変数関数の最大最小
$x,y$が$0 \leqq x \leqq 1,0 \leqq y \leqq 1$を
満たして変化するときの2変数関数
$f(x,y)=5xy-2(x+y)+1$
の最大値$M,$最小値$m$を求めよ。
福田のわかった数学〜高校1年生第7回〜絶対値(第3回)

単元:
#数Ⅰ#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第3回)
次の不等式を解け。
$|x+2|+|2x-1| \lt 4 $
この動画を見る
数学$\textrm{I}$ 絶対値(第3回)
次の不等式を解け。
$|x+2|+|2x-1| \lt 4 $
福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
福田のわかった数学〜高校1年生第6回〜絶対値(第2回)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第2回)
次の方程式、不等式を解け。
(1)$|x+2|=-2x$ (2)$|x+2| \lt -2x$
この動画を見る
数学$\textrm{I}$ 絶対値(第2回)
次の方程式、不等式を解け。
(1)$|x+2|=-2x$ (2)$|x+2| \lt -2x$
福田のわかった数学〜高校2年生第5回〜整式の割り算

単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 整式の割り算
整式$P(x)$を$x+2$で割ると$3$余り、
$(x-1)^2$で割ると$-x+4$余る。$P(x)$を
$(x+2)(x-1)^2$で割った時の余りは?
この動画を見る
数学$\textrm{II}$ 整式の割り算
整式$P(x)$を$x+2$で割ると$3$余り、
$(x-1)^2$で割ると$-x+4$余る。$P(x)$を
$(x+2)(x-1)^2$で割った時の余りは?
福田の1日1題わかった数学〜高校1年生第5回〜絶対値(第1回)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対値(第1回)
次の方程式、不等式を解け。
(1)$|x+2|=3$ (2)$|x+2| \lt 3$ (3)$|x+2| \gt 3$
この動画を見る
数学$\textrm{I}$ 絶対値(第1回)
次の方程式、不等式を解け。
(1)$|x+2|=3$ (2)$|x+2| \lt 3$ (3)$|x+2| \gt 3$
福田の1日1題わかった数学〜高校2年生第4回〜整式の割り算

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 整式の割り算
$x^{100}+2x^{50}+3x^2+4$ を
$x^2+x+1$ で割った余りは?
この動画を見る
数学$\textrm{II}$ 整式の割り算
$x^{100}+2x^{50}+3x^2+4$ を
$x^2+x+1$ で割った余りは?
福田の1日1題わかった数学〜高校1年生第4回〜方程式、不等式

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 方程式・不等式
次の方程式、不等式を解け。
(1)$ax=b$ (2)$ax \gt b$
この動画を見る
数学$\textrm{I}$ 方程式・不等式
次の方程式、不等式を解け。
(1)$ax=b$ (2)$ax \gt b$
福田の1日1題わかった数学〜高校2年生第3回〜高次方程式と連立方程式

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\left\{\begin{array}{1}
a^3x+a^2y+az=1\\
b^3x+b^2y+bz=1\\
c^3x+c^2y+cz=1\\
\end{array}\right.$
を解け。
ただし、$a,b,c$は異なる数で$0$でない。
この動画を見る
数学$\textrm{II}$ 高次方程式
$\left\{\begin{array}{1}
a^3x+a^2y+az=1\\
b^3x+b^2y+bz=1\\
c^3x+c^2y+cz=1\\
\end{array}\right.$
を解け。
ただし、$a,b,c$は異なる数で$0$でない。
福田の1日1題わかった数学〜高校1年生第3回〜対称式の変形

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
この動画を見る
数学$\textrm{I}$ 数と式
$a+b=3, ab=1$のとき、
$a^2+b^2, a^3+b^3, a^4+b^4,$
$a^5+b^5, a^7+b^7$ を求めよ。
福田の1日1題わかった数学〜高校2年生第2回〜高次方程式と整数解

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
この動画を見る
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
福田の1日1題わかった数学〜高校1年生第2回〜因数分解

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$(a-b)^3+(b-c)^3+(c-a)^3$
を因数分解せよ。
この動画を見る
数学$\textrm{I}$ 数と式
$(a-b)^3+(b-c)^3+(c-a)^3$
を因数分解せよ。
福田の1日1題わかった数学〜高校2年生第1回〜高次方程式

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
この動画を見る
数学$\textrm{II}$ 高次方程式
3次方程式$x^3+ax+b=0$の
3つの解を$\alpha,\beta,\gamma$とし、
$t_n=\alpha^n+\beta^n+\gamma^n$
のとき、$at_5+bt_4$を$a,b$で表せ。
福田の1日1題「わかった!」数学〜高校1年生第1回〜二重根号

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 数と式
$\sqrt{3+\sqrt2+\sqrt3+\sqrt6}$
を簡単にせよ。
この動画を見る
数学$\textrm{I}$ 数と式
$\sqrt{3+\sqrt2+\sqrt3+\sqrt6}$
を簡単にせよ。
3回目の「わかった!」を目指して〜新入生へのメッセージ〜福田の数学・雑談編

なぜ答を見ても賢くなれないのか〜福田の数学・雑談動画

なぜ答を見ても賢くなれないのか〜福田の数学・雑談動画

単元:
#数学検定・数学甲子園・数学オリンピック等#その他#勉強法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学は答を見ても賢くなれなれません!
数学を勉強するとき、答を見ることと賢くなることとは一致しないことをお話しします。
なぜなのか?どうしたらいいのか?丁寧に解説します。
この動画を見る
数学は答を見ても賢くなれなれません!
数学を勉強するとき、答を見ることと賢くなることとは一致しないことをお話しします。
なぜなのか?どうしたらいいのか?丁寧に解説します。
東京大学2021年度入試数学傾向と対策〜易化、難化どっち?今後の対策はどうしたらいい?〜福田の入試問題総括

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
東京大学2021年度入試数学傾向と対策説明動画です
この動画を見る
東京大学2021年度入試数学傾向と対策説明動画です
福田の数学〜慶應義塾大学2021年理工学部第5問〜ベクトルの図形への応用

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta, \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。
(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。
(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。
(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。
(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{5}}$ 座標平面上で、原点$O$を通り、$\overrightarrow{ u }=(\cos\theta, \sin\theta)$を方向ベクトルとする直線を
lとおく。ただし、$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。
(1)$\theta \neq \displaystyle \frac{\pi}{2}$とする。直線lの法線ベクトルで、$y$成分が正であり、大きさが
1のベクトルを$\ \overrightarrow{ n }\ $とおく。点$P(1,1)$に対し、$\overrightarrow{ OP }=s\ \overrightarrow{ u }+t\ \overrightarrow{ n }$と表す。$a=\cos\theta,$
$b=\sin\theta$として、$s,t$のそれぞれを$a,b$についての1次式で表すと、$s=\boxed{\ \ テ\ \ },$
$t=\boxed{\ \ ト\ \ }$である。
点$P(1,1)$から直線lに垂線を下ろし、直線$l$との交点を$Q$とする。ただし、点$P$
が直線$l$上にあるときは、点$Q$は$P$とする。以下では$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$とする。
(2)線分$PQ$の長さは、$\theta=\boxed{\ \ ナ\ \ }$のとき最大となる。
さらに、点$R(-3,1)$から直線$l$に垂線を下ろし、直線$l$との交点を$S$とする。
ただし、点$R$が直線$l$上にあるときは、点$S$は$R$とする。
(3)線分$QS$を$1:3$に内分する点を$T$とおく。$\theta$が$-\displaystyle \frac{\pi}{2} \lt \theta \leqq \displaystyle \frac{\pi}{2}$を満たしながら
動くとき、点$T(x,y)$が描く軌跡の方程式は$\boxed{\ \ ニ\ \ }=0$である。
(4)$PQ^2+RS^2$の最大値は$\boxed{\ \ ヌ\ \ }$である。
2021慶應義塾大学理工学部過去問
福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}$$\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
この動画を見る
${\Large\boxed{4}}\hspace{240pt}$
(1)$a$は$0 \lt a \leqq \displaystyle \frac{1}{2}$を満たす定数とする。$x \geqq 0$の範囲で不等式
$a\left(x-\displaystyle \frac{x^2}{4}\right) \leqq \log(1+ax)$ が成り立つことを示しなさい。
(2)$b$を実数の定数とする。$x \geqq 0$の範囲で不等式
$\log\left(1+\displaystyle \frac{1}{2}x\right) \leqq bx$
が成り立つような$b$の最小値は$\boxed{\ \ タ\ \ }$である。
(3)$n$と$k$を自然数とし、$I(n,k)=\lim_{t \to +0}$$\int_0^{\displaystyle \frac{k}{n}}\displaystyle \frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx$
とおく。$I(n,k)$を求めると、$I(n,k)=\boxed{\ \ チ\ \ }$である。また
$\lim_{n \to \infty}\displaystyle \frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ }$ である。
福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。
$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$
この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。
(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。
(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。
(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。
(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。
$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$
この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。
(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。
(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。
(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。
(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。
2021慶應義塾大学理工学部過去問
福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
