数学・算数の楽しさを思い出した / Ken

※下の画像部分をクリックすると、先生の紹介ページにリンクします。
よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
京都大過去問
この動画を見る
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。
京都大過去問
京大の三角比!気づければ簡単!【数学 入試問題】【京都大学】

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。
京都大過去問
この動画を見る
$\alpha,\beta$が$a>0°,\beta>0°,\alpha+\beta<180°$かつ$sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$sin\alpha+sin\beta$の取りうる範囲を求めよ。
京都大過去問
こんな問題が京大で出たことあったんだ【数学 入試問題】【京都大学】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
縦40cm、横25cmの長方形の紙がある。その四隅から、一辺の長さ$x$cmの正方形を切り取り、残りの紙を折りまげて、直方形の形のふたのない容器を作る。
このとき、この箱の容積を$Vcm^3$とする。$V$が最大となる$x$の値を求めよ。
京都大過去問
この動画を見る
縦40cm、横25cmの長方形の紙がある。その四隅から、一辺の長さ$x$cmの正方形を切り取り、残りの紙を折りまげて、直方形の形のふたのない容器を作る。
このとき、この箱の容積を$Vcm^3$とする。$V$が最大となる$x$の値を求めよ。
京都大過去問
微分のよく出る問題!解けますか?【数学 入試問題】【東京電機大学】

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
曲線$y=\dfrac{\log(ax)}{x^2}$の傾きが$9e^2$の接線が原点を通るとき、正の定数$a$を求めよ。
東京電機大過去問
この動画を見る
曲線$y=\dfrac{\log(ax)}{x^2}$の傾きが$9e^2$の接線が原点を通るとき、正の定数$a$を求めよ。
東京電機大過去問
6次式の最大値と最小値!?【数学 入試問題】【自治医科大学】

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。
自治医科大過去問
この動画を見る
$sin^6x+cos^6x$の最小値が$A$となるとき、$\dfrac{1}{A}$の値を求めよ。
自治医科大過去問
【良問】京大の整数問題!2つの解法で解きます!【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n^3-7n+9$が素数となるような整数$n$を全て求めよ。
京都大過去問
この動画を見る
$n^3-7n+9$が素数となるような整数$n$を全て求めよ。
京都大過去問
整数問題 × 確率!京大の取りたい問題【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1から5までの自然数を1列に並べる。どの並べ方も同様の確からしさで起こるものとする。このとき1番目と2番目と3番目の数の和と、3番目と4番目と5番目の数の和が等しくなる確率を求めよ。ただし、各並べ方において、それぞれの数字は重複なく1度ずつ用いるものとする。
京都大過去問
この動画を見る
1から5までの自然数を1列に並べる。どの並べ方も同様の確からしさで起こるものとする。このとき1番目と2番目と3番目の数の和と、3番目と4番目と5番目の数の和が等しくなる確率を求めよ。ただし、各並べ方において、それぞれの数字は重複なく1度ずつ用いるものとする。
京都大過去問
簡単すぎる京大の入試問題!解けますか?【数学】【京都大学】

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。
京都大過去問
この動画を見る
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。
京都大過去問
絶対に取りたい問題!京大の確率の問題!【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正四角形$ABCD$を考える。点$P$は時刻0では頂点$A$に位置し、1秒毎にある頂点から他の3頂点のいずれかに、等しい確率で動くとする。このとき、時刻0から時刻$n$までの間に、4頂点$A,B,C,D$のすべてに点$P$が現れる確率を求めよ。
ただし、$n$は1以上の整数とする。
京都大過去問
この動画を見る
正四角形$ABCD$を考える。点$P$は時刻0では頂点$A$に位置し、1秒毎にある頂点から他の3頂点のいずれかに、等しい確率で動くとする。このとき、時刻0から時刻$n$までの間に、4頂点$A,B,C,D$のすべてに点$P$が現れる確率を求めよ。
ただし、$n$は1以上の整数とする。
京都大過去問
京大の確率の問題!解けますか?【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
さいころを$n$個同時に投げるとき、出た目の数の和が$n+3$になる確率を求めよ。
京都大過去問
この動画を見る
さいころを$n$個同時に投げるとき、出た目の数の和が$n+3$になる確率を求めよ。
京都大過去問
中学生でも解ける京大の入試問題!解けますか?【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。
京都大過去問
この動画を見る
1歩で1段または2段のいずれかで階段を昇るとき、1歩で2段昇ることは連続しないものとする。15段の階段を昇る昇り方は何通りあるか。
京都大過去問
京大の整数問題!落としてはいけない問題です!【数学 入試問題】【京都大学】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2以上の自然数$n$に対し、$n$と$n^2+2$がともに素数になるのは、$n=3$の場合に限ることを示せ。
京都大過去問
この動画を見る
2以上の自然数$n$に対し、$n$と$n^2+2$がともに素数になるのは、$n=3$の場合に限ることを示せ。
京都大過去問
京大の標準的な問題!三角関数の知識だけで解けます【数学 入試問題】【京都大学】

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(\theta)=cos4\theta-4sin^2\theta$とする。$0≦\theta≦\dfrac{3\pi}{4}$における$f(\theta)$の最大値および最小値を求めよ。
京都大過去問
この動画を見る
$ f(\theta)=cos4\theta-4sin^2\theta$とする。$0≦\theta≦\dfrac{3\pi}{4}$における$f(\theta)$の最大値および最小値を求めよ。
京都大過去問
三角比の大小の比較【数学 入試問題】【神戸薬科大学】

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$A,B(A \neq B)$がいずれも鋭角のとき、次の3つの数のうち、最大値は$□$、最小値は$□$である。
$ sin\dfrac{A+B}{2},sin\dfrac{A}{2}+sin\dfrac{B}{2},\dfrac{sinA+sinB}{2}$
神戸薬科大過去問
この動画を見る
$A,B(A \neq B)$がいずれも鋭角のとき、次の3つの数のうち、最大値は$□$、最小値は$□$である。
$ sin\dfrac{A+B}{2},sin\dfrac{A}{2}+sin\dfrac{B}{2},\dfrac{sinA+sinB}{2}$
神戸薬科大過去問
早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。
早稲田大過去問
この動画を見る
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。
早稲田大過去問
微分でもいいけど「あれ」を使えば一瞬です【数学 入試問題】【早稲田大学】

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。
早稲田大過去問
この動画を見る
$x>0$のとき、$3x+\dfrac{1}{x^3}$の最小値とそのときの$x$の値を求めよ。
早稲田大過去問
自力で対数の範囲を求めて桁数を出す【数学 入試問題】【岐阜大学】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。
岐阜大過去問
この動画を見る
(1)不等式$\dfrac{3}{10}<log_{10} 2<\dfrac{4}{13}$を証明せよ。
(2)(1)を用いて、$2^{100}は何桁の数か答えよ。
岐阜大過去問
【良問】整数問題の重要なポイントが詰まりまくった問題【数学 大学入試】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)整数$m$に対して、$m^2$を4で割った余りは0または1であることを示せ。
(2)自然数$n,k$が$25×3^n=k^2+176$・・・・・・(①)を満たすとき、$n$は偶数であることを示せ。
(3)(2)の関係式(①)を満たす自然数の組($n,k$)をすべて求めよ。
数学入試問題過去問
この動画を見る
(1)整数$m$に対して、$m^2$を4で割った余りは0または1であることを示せ。
(2)自然数$n,k$が$25×3^n=k^2+176$・・・・・・(①)を満たすとき、$n$は偶数であることを示せ。
(3)(2)の関係式(①)を満たす自然数の組($n,k$)をすべて求めよ。
数学入試問題過去問
対数を用いて桁数を求める良問【数学 入試問題】【東京理科大学】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。
東京理科大過去問
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。
東京理科大過去問
【数Ⅲ】絶対に落としてはいけない微分!ポイントがぎゅっと詰まった問題【数学 入試問題】

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x sin(\log x) (1≦x≦e^\pi)$の最大値を求めよ。
数学入試問題過去問
この動画を見る
関数$ f(x)=x sin(\log x) (1≦x≦e^\pi)$の最大値を求めよ。
数学入試問題過去問
【数Ⅲ】うまく式変形できる?【数学 入試問題】

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。
横浜市大過去問
この動画を見る
$ f(x)=x sin^2x(0≦x≦\pi)$
の最大値を与える$ x$を$a$とするとき、$f(a)$を$a$の分数式で表せ。
横浜市大過去問
【良問】面倒な作業は省略しろ!一橋大学の整数問題【数学】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 3q^3-p^2q-pq^2+3q^3=2013$を満たす正の整数$ p,q$をすべて求めよ。
一橋大過去問
この動画を見る
$ 3q^3-p^2q-pq^2+3q^3=2013$を満たす正の整数$ p,q$をすべて求めよ。
一橋大過去問
【整数問題の超難問】素数の中のあの数字を使え!一橋大学で実際に出された入試問題【数学】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ a-b-8$と$b-c-8$が素数となるような素数の組$(a,b,c)$をすべて求めよ。
一橋大過去問
この動画を見る
$ a-b-8$と$b-c-8$が素数となるような素数の組$(a,b,c)$をすべて求めよ。
一橋大過去問
頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ
一橋大過去問
この動画を見る
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ
一橋大過去問
難問整数問題!大事なのは指数の感覚!?【一橋大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 6・3^{3x}+1=7・5^{2x}$を満たす$0$以上の整数$x$をすべて求めよ。
一橋大過去問
この動画を見る
$ 6・3^{3x}+1=7・5^{2x}$を満たす$0$以上の整数$x$をすべて求めよ。
一橋大過去問
整数問題の難問!君は解けるか!?【一橋大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ a^4=b^2+2^c$を満たす正の整数の組$(a,b,c)$で$a$が奇数であるものを求めよ。
一橋大過去問
この動画を見る
$ a^4=b^2+2^c$を満たす正の整数の組$(a,b,c)$で$a$が奇数であるものを求めよ。
一橋大過去問
整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$
整数$(x,y,z)$を求めよ.
一橋大過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$
整数$(x,y,z)$を求めよ.
一橋大過去問
微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問
この動画を見る
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問
対数とみせて様々な知識を使う良問【数学 入試問題】【奈良県立医大】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。
奈良県立医大過去問
この動画を見る
$x$の関数$ f(x)=(\log_{10}\dfrac{x}{a})(\log_{10}\dfrac{x}{b})$の最小値が$-\dfrac{1}{4}$であるとき、$a,b$mの値を求めよ。
ただし、$a,b$は$ab=100,a>b$を満たす正の実数とする。
奈良県立医大過去問
ずばずば約分できる問題【数学 入試問題】【奈良県立医大】

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abc=n$のとき、
$\dfrac{3a}{ab+a+1}+\dfrac{3nb}{bc+nb+n}+\dfrac{3c}{ca+c+n}$の値を求めよ。
ただし、$a,b,c$はすべて正の実数。
奈良県立医大過去問
この動画を見る
$abc=n$のとき、
$\dfrac{3a}{ab+a+1}+\dfrac{3nb}{bc+nb+n}+\dfrac{3c}{ca+c+n}$の値を求めよ。
ただし、$a,b,c$はすべて正の実数。
奈良県立医大過去問