数学・算数の楽しさを思い出した / Ken
数学・算数の楽しさを思い出した / Ken
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【算数】小学生すごすぎ!連続する5つの整数の積【中学受験】 #Shorts

単元:
#算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#過去問解説(学校別)#灘中学校
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連続した5つの整数の積が2441880であるとき、これら5つの整数のうち最も小さいものを求めよ。
この動画を見る
連続した5つの整数の積が2441880であるとき、これら5つの整数のうち最も小さいものを求めよ。
工夫が大事!積分と確率の融合問題【一橋大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
この動画を見る
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
【算数】これを小学生が解く!?中高生解けますか?【中学受験】 #Shorts

単元:
#算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#過去問解説(学校別)#灘中学校
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
5桁の36の倍数で、2,3,5のどれもがいずれかの桁に現れる整数のうち、最も小さいものを求めよ。
この動画を見る
5桁の36の倍数で、2,3,5のどれもがいずれかの桁に現れる整数のうち、最も小さいものを求めよ。
ガウス記号×数列!難しそうに見えるけど・・・【一橋大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x$に対し,$x$を超えない最大の整数を$\lbrack x \rbrack$で表す。数列{$a_k$}を
$a_k=2^{[\sqrt{k}]}$ $(k=1,2,3,・・・)
で定義する。正の整数$n$に対して
$b_n$=$\displaystyle \sum_{k=1}^n^{2} a_k$ を求めよ。
一橋大過去問
この動画を見る
実数$x$に対し,$x$を超えない最大の整数を$\lbrack x \rbrack$で表す。数列{$a_k$}を
$a_k=2^{[\sqrt{k}]}$ $(k=1,2,3,・・・)
で定義する。正の整数$n$に対して
$b_n$=$\displaystyle \sum_{k=1}^n^{2} a_k$ を求めよ。
一橋大過去問
【高校数学あるある】階乗の末尾に0はいくつ並ぶ? #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
150!の末尾が0の個数を求めよ。
この動画を見る
150!の末尾が0の個数を求めよ。
素数が絡んだ整数問題(再アップ)【青山学院大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
この動画を見る
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
【高校数学あるある】無限等比数列の収束条件 (再) #Shorts

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
無限等比例数{${\left( -\frac{8x}{x^2+7} \right)^n}$}が収束する$x$の範囲を求めよ。
この動画を見る
無限等比例数{${\left( -\frac{8x}{x^2+7} \right)^n}$}が収束する$x$の範囲を求めよ。
【整数問題】超典型的な問題!解けますか?【数学 入試問題】

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
この動画を見る
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る
$\sqrt3 $が無理数であることを証明せよ。
素数であることの証明【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。
京都大過去問
この動画を見る
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。
京都大過去問
【高校数学あるある】気持ちいい問題!整数部分と小数部分の式の値 #Shorts

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{2}{\sqrt6-2}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+4ab+4b^2$の値を求めよ。
この動画を見る
$\dfrac{2}{\sqrt6-2}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+4ab+4b^2$の値を求めよ。
【良問】素数を扱え!考え方をきっちり理解したい整数問題です【京都大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$p$が素数ならば,$p^4+14$は素数でないことを示せ。
京都大過去問
この動画を見る
$p$が素数ならば,$p^4+14$は素数でないことを示せ。
京都大過去問
【高校数学あるある】平方根を含んだ計算問題!解けると気持ちいい! #Shorts

単元:
#数Ⅰ#数と式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{\sqrt2+1}+\dfrac{1}{\sqrt3+\sqrt2}+\dfrac{1}{\sqrt4+\sqrt3}$
$+……+\dfrac{1}{\sqrt10+\sqrt9}$
これを解け。
この動画を見る
$\dfrac{1}{\sqrt2+1}+\dfrac{1}{\sqrt3+\sqrt2}+\dfrac{1}{\sqrt4+\sqrt3}$
$+……+\dfrac{1}{\sqrt10+\sqrt9}$
これを解け。
【中学受験】気持ちいい算数の計算問題!キセル算って知ってる? #Shorts

単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{6}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{2}{99}$
これを解け。
この動画を見る
$\dfrac{1}{6}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{2}{99}$
これを解け。
整数問題!地味に難しいです【大阪医科薬科大学】【数学 入試問題】

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$x,y$に対する方程式$3^x-2^y=1$を考える。
(1)y≧2に対し解$x$が存在するならば,$x$は偶数であることを示せ。
(2)上の方程式を満たす自然数$x,y$の組をすべて求めよ。
大阪医科歯科大過去問
この動画を見る
自然数$x,y$に対する方程式$3^x-2^y=1$を考える。
(1)y≧2に対し解$x$が存在するならば,$x$は偶数であることを示せ。
(2)上の方程式を満たす自然数$x,y$の組をすべて求めよ。
大阪医科歯科大過去問
【高校数学あるある】よく見る問題!下4桁を求めよ! #Shorts

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$99^{99}$の下4桁を求めよ。
この動画を見る
$99^{99}$の下4桁を求めよ。
この式は「あれ」を使うしかないですよね【京都大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
多項式$(x^{100}+1)^{100}+(x^{2}+1)^{100}+1$は多項式$x^2+x+1$で割り切れるか。
京都大過去問
この動画を見る
多項式$(x^{100}+1)^{100}+(x^{2}+1)^{100}+1$は多項式$x^2+x+1$で割り切れるか。
京都大過去問
【超便利】三角比のあの面倒な公式は覚えなくていい【高校数学】 #Shorts

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角比の導出方法に関して解説していきます。
この動画を見る
三角比の導出方法に関して解説していきます。
対数の良問!何で2022を挟み込む?【京都大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$5.4<\log_4 2022<5.5$であることを示せ。
ただし,$0.301<\log_{10} 2<0.3011$であることは用いてよい。
京都大過去問
この動画を見る
$5.4<\log_4 2022<5.5$であることを示せ。
ただし,$0.301<\log_{10} 2<0.3011$であることは用いてよい。
京都大過去問
【中学数学あるある】式変形で気持ち良く解ける計算問題 #Shorts

単元:
#数学(中学生)#中3数学#平方根
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt{85^2-84^2+61^2-60^2-26×11}$
これを解け。
この動画を見る
$\sqrt{85^2-84^2+61^2-60^2-26×11}$
これを解け。
【高校数学あるある】二項定理と1の3乗根ωの融合問題 #Shorts

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^2+x+1=0$の解の一つを$\omega$とするとき
${}_9 \mathrm{ C }_0+{}_9 \mathrm{ C }_1\omega+{}_9 \mathrm{ C }_2\omega+……+{}_9 \mathrm{ C }_9\omega^9$の値を求めよ。
この動画を見る
$x^2+x+1=0$の解の一つを$\omega$とするとき
${}_9 \mathrm{ C }_0+{}_9 \mathrm{ C }_1\omega+{}_9 \mathrm{ C }_2\omega+……+{}_9 \mathrm{ C }_9\omega^9$の値を求めよ。
「あの公式」を使えるかどうかがポイントの良問!【東京大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a$は0でない実数とする。関数
$f(x)=(3x^2-4)(x-a+\dfrac{1}{a})$
の極限値と極小値の差が最小となる$a$の値を求めよ。
東大過去問
この動画を見る
$a$は0でない実数とする。関数
$f(x)=(3x^2-4)(x-a+\dfrac{1}{a})$
の極限値と極小値の差が最小となる$a$の値を求めよ。
東大過去問
対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。
大阪大過去問
この動画を見る
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。
大阪大過去問
これ知ってる?ある公式を知ってれば一瞬で解ける問題! #Shorts

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
この動画を見る
$ tan30°=tan 10°・tan50°・tan70°$を示せ。
絶対に取りたい整数問題!分からない時はとにかく実験あるのみ【早稲田大学】【数学 入試問題】

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n^2+1,2n^2+3,6n^2+5$がすべて素数となる自然数$n$は$n=1,2$のみであることを示せ。
早稲田大過去問
この動画を見る
$n^2+1,2n^2+3,6n^2+5$がすべて素数となる自然数$n$は$n=1,2$のみであることを示せ。
早稲田大過去問
【因数分解】あるあるの難問!パターンを抑えたい数学の問題 #Shorts

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。
$x^4-16x^2+100$
この動画を見る
因数分解せよ。
$x^4-16x^2+100$
3通りで証明できる!?おもしろい解法を紹介【数学 三角関数】

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$tan10°=tan20°・tan30°・tan40°$を示せ。
この動画を見る
$tan10°=tan20°・tan30°・tan40°$を示せ。
差がつく問題!記号が多くても焦らずに解けば大丈夫!【お茶の水女子大学】【数学 入試問題】

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式
${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$
が成り立つことを示せ。
お茶の水女子大過去問
この動画を見る
$m$を2以上の自然数,$n$を自然数とするとき,次の不等式
${}_{mn} \mathrm {C}_n≧m^n>\displaystyle \sum_{i=0}^{n-1} m^i$
が成り立つことを示せ。
お茶の水女子大過去問
【数学ネタ】近似値を信用しない人 #Shorts

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$2^{30}$の桁数を求めよ。
ただし、$\log_{10}2$=0.3010とする。
この動画を見る
$2^{30}$の桁数を求めよ。
ただし、$\log_{10}2$=0.3010とする。
【頻出】あれを使う!落としてはいけない問題です【数学 入試問題】【茨城大学】

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$21^{2015}$を400で割ったときの余りを求めよ。
茨城大過去問
この動画を見る
$21^{2015}$を400で割ったときの余りを求めよ。
茨城大過去問
