ますただ - 質問解決D.B.(データベース) - Page 41

ますただ

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

大学入試問題をベースに数学の動画を作成しています。大学過去問を多数解説しています。
頻繁に更新していますので是非ご視聴ください!

職業:数学者
職歴:高校非常勤(院生時代)、高専、大学 准教授
趣味:
①将棋 棋力は将棋ウォーズ4段、将棋倶楽部24はR2000前後(小学校5,6年のころに頑張ってました)
②麻雀 アカウントは消えましたが、無課金で天鵬で7段まで上がりました。
③ソフトテニス 中学から大学まで、10年間部活でやっていました。大学時代は4年になってもリーグにでていました。

大学入試問題#19 京都大学(2020) 定積分

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{x}{\cos^2x}\ dx$を計算せよ。

出典:2020年京都大学 入試問題
この動画を見る 

大学入試問題#18 東北大学(2020) 数列

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。

出典:2020年東北大学 入試問題
この動画を見る 

大学入試問題#17 埼玉大学(2021) 解と係数の関係

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
$x^2-kx+\displaystyle \frac{5}{2}=0$の実数解$\alpha,\beta,(\alpha \lt \beta)$は
$(\alpha-3)^2+(\beta-3)^2=8$をみたす。
$k,\alpha,\beta$の値を求めよ。

出典:2020年埼玉大学 入試問題
この動画を見る 

大学入試問題#16 埼玉大学(2020) 式変形

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。

出典:2020年埼玉大学 入試問題
この動画を見る 

大学入試問題#15 慶應義塾大学(2021) 整数問題

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
$a,b,c,d:$正の整数
$a^3=b^2$
$c^3=d^2$
$c-a=9$のとき$a,b,c,d$の値を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

【誘導あり 概要欄】14滋賀県教員採用試験(数学:4番 微分方程式)

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: ますただ
問題文全文(内容文):
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
この動画を見る 

大学入試問題#14 津田塾大学(2021) 微積の応用

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

大学入試問題#13 自治医科大学(2021) 対数と整数問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。

出典:2021年自治医科大学 入試問題
この動画を見る 

大学入試問題#12 獨協大学(2021) 数列

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$s_n=2a_n-3n$
一般項$a_n$を求めよ。

出典:2021年獨協大学 入試問題
この動画を見る 

大学入試問題#11 北里大学(医) 2021 整数問題

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。

(2)
$x=y=1$のとき$$

(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。

出典:2021年北里大学医学部 入試問題
この動画を見る 

03愛知県教員採用試験(数学:9番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$5x+3y=521$をみたす自然数$x,y$の組の個数を求めよ。
この動画を見る 

01愛知県教員採用試験(数学:14番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
この動画を見る 

大学入試問題#10 慶応義塾大学(2021) 解と係数の関係の応用

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt m:$整数
$x^3-20x^2+mx-2(m-1)=0$は3つの異なる正の整数解をもつとき、
$m$と3つの解を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

大学入試問題#9 獨協大学(2021) 微分法の応用

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a:$定数
$\displaystyle \int_{0}^{x}f(t)dt+\displaystyle \int_{0}^{1}x^2f(t)dt=x^2+3x+a$を満たすとき
$f(x)$を求めよ。

出典:2021年獨協大学 入試問題
この動画を見る 

11愛知県教員採用試験(数学:3番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$l,k:$自然数
$p:$素数
$l^2-k^2=21$
$p=l+k$を満たす$p,l,k$を求めよ。
この動画を見る 

06滋賀県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。

出典:滋賀県教員採用試験
この動画を見る 

大学入試問題#8 東京理科大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
この動画を見る 

17滋賀県教員採用試験(数学:4番 実数解の個数)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。

出典:滋賀県教員採用試験
この動画を見る 

大学入試問題#7 成城大学(2021) 対数の方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x \gt y \gt 0$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^{\frac{x}{y}+\frac{y}{x}}=32・・・① \\
log_3(x-y)+log_3(x+y)=1・・・②
\end{array}
\right.
\end{eqnarray}$ を解け。

出典:2021年成城大学 入試問題
この動画を見る 

14滋賀県教員採用試験(数学:2番 2変数関数の最大値、最小値)

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2=1$をみたすとき
$5x^2+2xy+3y^2$の最大値、最小値を求めよ。

出典:滋賀県教員採用試験
この動画を見る 

大学入試問題#6 学習院大学(2021) 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。

出典:2021年学習院大学 入試問題
この動画を見る 

大学入試問題#5 早稲田大学(2021) 三角関数

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{2+\sin\alpha}+\displaystyle \frac{1}{2+\sin2\beta}=2$のとき
$|\alpha+\beta-8\pi|$の最小値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

大学入試問題#4 慶應義塾大学(2021) 軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
放物線$y=x^2$上を動く2点$A,B$と原点$O$を線分で結んだ
$\triangle OAB$において
$\angle AOB=90^{ \circ }$とする。
このとき、$\triangle OAB$の重心$G$の軌跡を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

大学入試問題#3 慶應義塾大学(2021) 不等式を満たす整数の個数

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^2-5x+3-2log_3\ x \lt 0$を満たす自然数$x$の個数を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

大学入試問題#2 早稲田大学(2021) 図形・三角関数・微分

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
半径1の円に外接する$AB=AC$の$\triangle ABC$において
$\angle BAC=2\theta$とする。
(1)$AC$を$\theta$で表せ
(2)$AC$が最小となるときの$\sin\theta$の値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

大学入試問題#1 早稲田大学(2021) 微積の応用

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

06和歌山県教員採用試験(数学:3番 定積分の応用)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(t)=\displaystyle \int_{0}^{1}|x^2-tx|dx$の最小値を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

練習問題52 慶応大学(2021) 最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt x,\ 0 \lt y:$実数
$0x^2+16y^2=144$をみたすとき$xy$の最大値を求めよ。

出典:2021年慶應義塾大学
この動画を見る 

練習問題51 広島大学 改 不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\ 2(x-1)e^{-x}\cos\ x\ dx$
$\displaystyle \int\ e^{-x}\cos\ x\ dx=\displaystyle \frac{e^{-x}}{2}(\sin\ x-\cos\ x)+c$
$\displaystyle \int\ e^{-x}\sin\ x\ dx=-\displaystyle \frac{e^{-x}}{2}(\sin\ x+\cos\ x)+c$

$c$は積分定数

出典:広島大学
この動画を見る 

07和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
この動画を見る 
PAGE TOP