鈴木貫太郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
兵庫医大 普通の基本問題 指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+2}+a^2-3a+4=0$が異なる2つの正の解をもつ$a$の範囲を求めよ.
2019兵庫医大過去問
この動画を見る
$4^x-2^{x+2}+a^2-3a+4=0$が異なる2つの正の解をもつ$a$の範囲を求めよ.
2019兵庫医大過去問
どっちがでかい?
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$2^{3^{100}}$ VS $3^{2^{150}}$
この動画を見る
どちらが大きいか?
$2^{3^{100}}$ VS $3^{2^{150}}$
産業医科大 cos sin 和の値
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=\Box$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=\Box$
2019産業医大過去問
この動画を見る
これを解け.
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=\Box$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=\Box$
2019産業医大過去問
指数方程式を解け
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$3^x・2^{\frac{3}{x}}=24$
この動画を見る
これを解け.
$3^x・2^{\frac{3}{x}}=24$
ただの因数分解 愛知医科大
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$a^4+2a^3+3a^2+2a+1$
簡単に
$\sqrt{\dfrac{x^4+y^4+(x+y)^4}{2}}$
2019愛知医科大過去問
この動画を見る
因数分解せよ.
$a^4+2a^3+3a^2+2a+1$
簡単に
$\sqrt{\dfrac{x^4+y^4+(x+y)^4}{2}}$
2019愛知医科大過去問
血液型ガチャ 愛知医科大
単元:
#確率分布と統計的な推測#確率分布#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
血液型$AB$の割合を$10$%とする.
$\Box$人以上集めればその中に少なくとも1人以上$AB$型がいる確率が$99$%以上となる.
$\Box$を求めよ.
この動画を見る
血液型$AB$の割合を$10$%とする.
$\Box$人以上集めればその中に少なくとも1人以上$AB$型がいる確率が$99$%以上となる.
$\Box$を求めよ.
東海大(医)バーゼル問題を導く
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$(\sqrt x+i)^7$の虚部は?
②$(\sqrt x+i)^7$が実数になる$x$を求めよ.
③②を満たす$x$の和を求めよ.
④$(\sqrt x+i)^{2n+1}$の虚部の$x$の$n$次と$(n-1)$次の係数を求めよ.
⑤$\displaystyle \sum_{k-1}^n \dfrac{1}{\tan^2\dfrac{k}{2n+1}\pi}$
⑥$0\lt \theta \lt \dfrac{\pi}{2}$なら$\sin\theta \lt \theta \lt \tan\theta$
$ \dfrac{1}{\tan^2\theta}\lt \dfrac{1}{\theta^2}\lt \dfrac{1}{\sin^2\theta}$である.
⑦$\displaystyle \sum_{k-1}^{\infty}\dfrac{1}{k^2}$を求めよ.
2018東海大(医)過去問
この動画を見る
①$(\sqrt x+i)^7$の虚部は?
②$(\sqrt x+i)^7$が実数になる$x$を求めよ.
③②を満たす$x$の和を求めよ.
④$(\sqrt x+i)^{2n+1}$の虚部の$x$の$n$次と$(n-1)$次の係数を求めよ.
⑤$\displaystyle \sum_{k-1}^n \dfrac{1}{\tan^2\dfrac{k}{2n+1}\pi}$
⑥$0\lt \theta \lt \dfrac{\pi}{2}$なら$\sin\theta \lt \theta \lt \tan\theta$
$ \dfrac{1}{\tan^2\theta}\lt \dfrac{1}{\theta^2}\lt \dfrac{1}{\sin^2\theta}$である.
⑦$\displaystyle \sum_{k-1}^{\infty}\dfrac{1}{k^2}$を求めよ.
2018東海大(医)過去問
コメント欄はありがたい。本当に2秒で答えが出た
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.
2019横浜市立(医)過去問
この動画を見る
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.
2019横浜市立(医)過去問
横浜市立(医)tanの半角
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.
2019横浜市立(医)過去問
この動画を見る
$\dfrac{1}{\tan\dfrac{\pi}{24}}$の値を求めよ.
2019横浜市立(医)過去問
横浜市立(医)ド・モアブルと7倍角
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)ド・モアブルの定理を用いて$\sin7\theta$を$\sin\theta,\cos\theta$およびその累乗を用いて表せ.
(2)$7x^3-35x^2+21x-1=0$を解け.
(3)$\dfrac{1}{\tan^2\dfrac{\pi}{7}}+\dfrac{1}{\tan^2\dfrac{2\pi}{7}}+\dfrac{1}{\tan^2\dfrac{3\pi}{7}}$の値を求めよ.
2016横浜市立(医)
この動画を見る
(1)ド・モアブルの定理を用いて$\sin7\theta$を$\sin\theta,\cos\theta$およびその累乗を用いて表せ.
(2)$7x^3-35x^2+21x-1=0$を解け.
(3)$\dfrac{1}{\tan^2\dfrac{\pi}{7}}+\dfrac{1}{\tan^2\dfrac{2\pi}{7}}+\dfrac{1}{\tan^2\dfrac{3\pi}{7}}$の値を求めよ.
2016横浜市立(医)
新高1生へ 失敗しないたすきがけ因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
この動画を見る
因数分解せよ.
$48x^2+5x-18$
$(ax+b)(cx+d)$
北海道大 微分積分
単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+6x^3-24x^2$の変曲点を$P(\alpha,f(\alpha)),Q(\beta,f(\beta))とする.(\alpha \gt \beta)$
$f(x)$の$P$における接線と$f(x)$で囲まれる面積を求めよ.
2021北海道大過去問
この動画を見る
$f(x)=x^4+6x^3-24x^2$の変曲点を$P(\alpha,f(\alpha)),Q(\beta,f(\beta))とする.(\alpha \gt \beta)$
$f(x)$の$P$における接線と$f(x)$で囲まれる面積を求めよ.
2021北海道大過去問
札幌医科大2021 三角関数 複数解法
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\triangle ABC$で$\sin C=2\cos A\sin B$である.
$\triangle ABC$の形を求めよ.
2021札幌医大過去問
この動画を見る
$\triangle ABC$で$\sin C=2\cos A\sin B$である.
$\triangle ABC$の形を求めよ.
2021札幌医大過去問
札幌医科大学2021 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.
2021札幌医大過去問
この動画を見る
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.
2021札幌医大過去問
旭川医科大2021 確率漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
コイン2枚 表表+2,表裏+1,裏裏0であり,0からスタートする.
$n$回の合計が
(1)$a_1,b_1,c_1,a_2,b_2,c_2$のとき,求めよ.
(2)$a_{n+1},b_{n+1},c_{n+1}$を,$a_n,b_n,c_n$で求めよ.
(3)$x_{n+1}=\dfrac{1}{4}x_n;\dfrac{1}{4}$を$x_1$を用いて表せ.
(4)$a_n$を求めよ.
2021旭川医大過去問
この動画を見る
コイン2枚 表表+2,表裏+1,裏裏0であり,0からスタートする.
$n$回の合計が
(1)$a_1,b_1,c_1,a_2,b_2,c_2$のとき,求めよ.
(2)$a_{n+1},b_{n+1},c_{n+1}$を,$a_n,b_n,c_n$で求めよ.
(3)$x_{n+1}=\dfrac{1}{4}x_n;\dfrac{1}{4}$を$x_1$を用いて表せ.
(4)$a_n$を求めよ.
2021旭川医大過去問
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^{x^2-2\sqrt5 x}=\dfrac{1}{121}$
この動画を見る
実数解を求めよ.
$3^{x^2-2\sqrt5 x}=\dfrac{1}{121}$
Σと合同式OnlineMathContest
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1\leqq S,t\leqq 2020$であり,$S$は整数,$t$は奇数である.
$\displaystyle \sum_{k=1}^S k^t$が$S$の倍数となる$(s,t)$の組数を求めよ.
この動画を見る
$1\leqq S,t\leqq 2020$であり,$S$は整数,$t$は奇数である.
$\displaystyle \sum_{k=1}^S k^t$が$S$の倍数となる$(s,t)$の組数を求めよ.
コメント欄はありがたい 素晴らしい別解
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
コメント欄はありがたい 素晴らしい別解
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る
$p,q,r$は自然数である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
多項定理の応用OnlineMathContest
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
この動画を見る
$p,q,r$は自然数であり,$p+q+r=10$である.
$\dfrac{10!}{p!q!r!}$の総和を求めよ.
方程式 整数解OnlineMathContest
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(m-480)x+4m+97=0$が正整数解のみをもつ整数$m$を求めよ.
この動画を見る
$x^2-2(m-480)x+4m+97=0$が正整数解のみをもつ整数$m$を求めよ.
神様の確率OnlineMathContest
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
白$999$個赤$1001$個のボールを無作為に1個ずつ取り出し,どちらかの色がすべて取り出されたら終了,白が取り出されて終わる確率を求めよ.
この動画を見る
白$999$個赤$1001$個のボールを無作為に1個ずつ取り出し,どちらかの色がすべて取り出されたら終了,白が取り出されて終わる確率を求めよ.
藤田医科大 複素数の計算
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$
$12x^{2026}+23x^{2025}+34x^{2024}+45x^{2023}+$
$56x^{2022}+67^{2021}$の値を求めよ.
2021藤田医科大過去問
この動画を見る
$x^2-x+1=0$
$12x^{2026}+23x^{2025}+34x^{2024}+45x^{2023}+$
$56x^{2022}+67^{2021}$の値を求めよ.
2021藤田医科大過去問
2021 神戸大(文)複素数の累乗
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$(3+i)^n$
$n=2,3,4,5$の値と虚部の整数を$10$で割った余りを求めよ.
②$(3+i)^n$は虚数であることを示せ.($n$は自然数)
2021神戸大(文)
この動画を見る
①$(3+i)^n$
$n=2,3,4,5$の値と虚部の整数を$10$で割った余りを求めよ.
②$(3+i)^n$は虚数であることを示せ.($n$は自然数)
2021神戸大(文)
cosの積 華麗な解法で綺麗な答え
単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \prod_{k=1}^7 \cos\dfrac{\pi}{15}\pi=$
$\cos\dfrac{\pi}{15}\cos\dfrac{2\pi}{15}\cos\dfrac{3\pi}{15}\cos\dfrac{4\pi}{15}\cos\dfrac{5\pi}{15}\cos\dfrac{6\pi}{15}\cos\dfrac{7\pi}{15}$
この動画を見る
これを解け.
$\displaystyle \prod_{k=1}^7 \cos\dfrac{\pi}{15}\pi=$
$\cos\dfrac{\pi}{15}\cos\dfrac{2\pi}{15}\cos\dfrac{3\pi}{15}\cos\dfrac{4\pi}{15}\cos\dfrac{5\pi}{15}\cos\dfrac{6\pi}{15}\cos\dfrac{7\pi}{15}$
方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x$を実数とする.
$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
この動画を見る
これを解け.$x$を実数とする.
$\sqrt{x^2+3x+2}-\sqrt{x^2+2x+5}=3-x$
なるほど!コメント欄は勉強になります
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.
2021近畿大(医)
この動画を見る
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.
2021近畿大(医)
近畿大(医)確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.
2021近畿大(医)
この動画を見る
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.
2021近畿大(医)
埼玉医科大 確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$A,B$交互にサイコロを振り,直前と同じ目が出たら負け,$A$から始めたとき,$B$の負ける確率を求めよ.
2021埼玉医科大過去問
この動画を見る
$A,B$交互にサイコロを振り,直前と同じ目が出たら負け,$A$から始めたとき,$B$の負ける確率を求めよ.
2021埼玉医科大過去問
2021富山大 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P\gt 3$,$P$と$P+4$は素数である.
(1)$P$を6で割った余りを示せ.
(2)$P+2$は3の倍数であることを示せ.
(3)$(P+1)(P+2)(P+3)$は$120$の倍数であることを示せ.
2021富山大過去問
この動画を見る
$P\gt 3$,$P$と$P+4$は素数である.
(1)$P$を6で割った余りを示せ.
(2)$P+2$は3の倍数であることを示せ.
(3)$(P+1)(P+2)(P+3)$は$120$の倍数であることを示せ.
2021富山大過去問