慶應義塾大学 - 質問解決D.B.(データベース) - Page 2

慶應義塾大学

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)2024の約数の中で1番大きいものは2024だが,6番目に大きいものは$\boxed{ア}$である.
2024の6乗根に最も近い自然数は$\boxed{イ}$である.

2024慶應義塾大学理工過去問
この動画を見る 

福田の数学〜長文問題を解くコツは〜慶應義塾大学2023年環境情報学部第6問〜長文問題と2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{6}$いま、 A 国の部品会社 A 社から B 国のメ ー カ ー B 社が一定量の部品の取引を行うために、その取引価格pを交渉している。 A 社の生産コスト c は事前の投資額xに依存し、$\dfrac{1}{8}x^2-10x+220$が成り立っているものとすると、 A 社の利益はp-c-xと表すことができる。一方、 B 社はこの部品を使用し生産を行うことで308 の売上を得ることができるものとすると、 A 社から部品を輸人する際に 10 %の関税が課せられるため、 B 社の利益は$308- \dfrac{11}{10}p$と表すことができる。ところで、交渉は常に成立するわけではなく決裂することもあるから、 A 社およびB 社は共に決裂した場合のことを考慮しながら互いに交渉しなければならないそこで、交渉が成立したときの A 社 (B 社)の利益から、交渉が決裂したときのA社(B社)の利益(負の場合は損失を意味する)を引いた値を、A社(B社)の純利益と呼び、 A 社の純利益と B 社の純利益の積を最大化するようにpの値が定まるものとする。またA社は以上のことを踏まえて、自らの利益p-c-xを最大化するようなxの大きさの投資を、事前に行っておくものとする。
(1)交渉が決裂した時、A社は生産を行わず生産コストはかからないが、事前の投資額xの分だけ損失を被るのでA社の利益は-xとなり、B社はB国内の他の部品会社から、価格220で同僚の同じ部品を調達できるとすると、(この場合は関税がかからないことから)B社の利益は308-220=88となる。この場合の投資額xは$\fbox{ア}$となり、価格pは$\fbox{イ}$となる。
(2)交渉が決裂した時、A者は国内の他のメーカーに価格250で部品を販売できるとするとB社の利益は0となる。この場合の投資額xは$\fbox{ウ}$となり、価格pは$\fbox{エ}$となる。
最後に、交渉が成立した場合の「(2)の会社の利益」ー「(1)のA社の利益」=$\fbox{オ}$

2023慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜対称性を意識しよう〜慶應義塾大学2023年環境情報学部第5問〜球が立方体の辺と接する条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy空間において、O(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,1),E(1,0,1),F(1,1,1),G(0,1,1)を頂点とする立方体 OABC-DEFG が存在する。いま、原点を通る球 S が、立方体 OABC-DEFG のいくつかの辺と接している。以下のそれぞれの場合について、球 S の半径と中心の座標を求めなさい。
※図は動画内
(1)3 つの辺 BF,EF,FG と接する場合
( 2 ) 6 つの辺 AB , AE, BC, CG, DE, DG と接する場合
( 3 ) 4 つの辺 AB, BC, EF, FG と接する場合
(4)4 つの辺 DE, EF, FG, DG と接する場合

慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

出題者の想定した解法0人の問題・難問ではありません(慶應・理工)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
係数を整数とする多項式を$f(x)$とする
任意の整数m,nにおいて$f(m+n)-f(n)$はmの倍数であることを証明せよ

慶應・理工過去問
この動画を見る 

福田の数学〜魔方陣の基礎知識があると楽に解けるね〜慶應義塾大学2023年環境情報学部第3問(2)〜魔方陣と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
( 2 )まず、図 2 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の和がいずれも等しくなるように、相異なる 1 ~ 9 の正の整数を 1 つずっ割り当てる。複数の割り当て方が考えられるが、その 1 つを選び割り当てるものとする。この 9 つの数を、図 3 に示すように 3 つのサイコロの展開図に書き写し、図 4のように 3 つのサイコロを作成する。サイコロは振ると、等しい確率で目(書き写した数)が出るものとする。いま、 2 人のプレ ー ヤ ー が 3 つのサイコロから異なるものを 1 つずつ選び、そのサイコロを振り、出た目が大きい方が勝っとする。あなたの対戦相手が9 を含むサイコロを選んだとき、あなたがこのゲ ー ムに、より高確率に勝っために選ぶべきサイコロは、$\fbox{エ}$を含むサイコロである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜積が等しくなる魔方陣を作ろう〜慶應義塾大学2023年環境情報学部第3問(1)〜積が等しくなる魔方陣

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
(1)図 1 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の積がいずれも等しくなるように、相異なる正の整数を 1 つずっ割り当てる。ただし、 4 と 9 は図 1 のように割り振られており、$\fbox{ア}く\fbox{イ}$となっているものとする。$\fbox{ア},\fbox{イ}\fbox{ウ}$に入る数を求めなさい。

慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$

$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る 

福田の数学〜単なる不等式の問題と思ったら大間違い〜慶應義塾大学2023年環境情報学部第1問(2)〜有理数と不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の整数$m$と$n$は、不等式
$\frac{2022}{2023}<\frac{m}{n}<\frac{2023}{2024}$
を満たしている。このような分数$\frac{m}{n}$の中で$n$が最小のものを求めよ。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜互除法の操作回数を最大にするには〜慶應義塾大学2023年環境情報学部第1問(1)〜ユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{ 1 }}$(1)正の整数$\textit{m}$と$\textit{n}$の最大公約数を効率よく求めるには、$\textit{m}$を$\textit{n}$で割った時の余りを$\textit{r}$としたとき、$\textit{m}$と$\textit{n}$の最大公約数と$\textit{n}$と$\textit{r}$の最大公約数が等しいことを用いるとよい。たとえば、455と208の場合、次のように余りを求める計算を3回行うことで最大公約数13を求めることができる。

455÷208=2・・・39
208÷39=5・・・13
39÷13=3・・・0

このように余りを求める計算をして最大公約数を求める方法をユークリッドの互除法という。20711と15151の最大公約数は${\boxed{ア}}$である。
100以下の正の整数$m$と$n$(ただし$m \gt n$とする)の最大公約数を
ユークリッドの互除法を用いて求めるとき、
余りを求める計算の回数が最も多く必要になるのは
$m={\boxed{イ}},n={\boxed{ウ}}$のときである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜サッカーボール上のベクトルを求めよう〜慶應義塾大学2023年総合政策学部第5問〜空間の位置ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$サッカーボールは12個の正五角形と20個の正六角形からなり、切頂二十面体と呼ばれる構造をしている。以下では、正五角形と正六角形の各辺の長さを1であるとし、右図のように頂点にアルファベットで名前を付ける。なお、正五角形の辺と対角線の長さの比は
$1:\frac{1+\sqrt5}{2}$である。

(1)$\overrightarrow{ OA_1 }$と$\overrightarrow{ OA_2 }$の内積は,
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\dfrac{\boxed{ア}+\boxed{イ}\sqrt{\boxed{ウ}}}{\boxed{エ}}$である.

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜まったく手が出ないときの対処法〜慶應義塾大学2023年総合政策学部第4問前編〜格子点を内包する軌道の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
平面上でx座標もy座標も整数である点を格子点という。 m とnを正の整数とするとき、xy平面上に点 $P_{ij}$(i = 1 , 2 ,・・・,j=1,2,・・・,n)を格子点(i,j)に置く。次にこれらの点を囲むようにA ( 0.5 , 0.5 ), B ( m + 0.5 , 0.5 ), C ( m + 0.5 ,n+ 0.5 ),D ( 0.5 ,n+ 0.5 )を頂点とする長方形を描く。
長方形ABCD の内側に以下のように「軌道」を作図する。
l. $P_{ij}$の外周の点(i= 1 またはi= m またはj= 1 またはj=nの点)を選び、その点から 0.5 の距離だけはなれた長方形 ABCD 上の点を軌道の起点とし、基点の置かれた辺と 45°の角度をなす直線の軌道を長方形 ABCD 内に描く。
2. 軌道が長方形 ABCD の別の辺にぶつかった場合、軌道を直角に曲げる。この操作を繰り返すと、軌道はいずれ起点に戻るので、そこで描くのを停止すると、一筆書きで閉じた 1 つの軌道が得られる。
3.ステップ 1 と 2 で描いた軌道の内側にすべての点 $P_{i,j}$が含まれているようなら、作図を終了する。軌道の外にある点が残っている場合、まだ軌道の外にある外周の点 $P_{i,j}$ を選び、ステップ 1 以降の操作を繰り返す。すべての点 $P_{i,j}$を軌道内に納めるために必要な最小の軌道の数を T(m,n)と書くことにする。右の図は T(4,2)= 2 であることを示している。(異なる軌道を破線と点線で描き分けた)
(l) T ( 4 , 4 )は$\fbox{ア}$である。
( 2 ) T ( 15 , 5 )は$\fbox{イ}$である。
( 3 ) T ( 2023 , 1015 )は$\fbox{ウ}$である。
( 4 )下の 12 個の T ( m ,n)の値の最大値は$\fbox{エ}$であり、最大値を取るものが$\fbox{オ}$個ある。T(2,1), T(3, 2 ), T(8, 5 ), T(6, 3 ), T(9, 6 ), T ( 24 , 15 ), T ( 63 , 39 ), T ( 165 ,102 ),T ( 699 , 267 ), T ( 2961 ,1131), T ( 7752 , 4791) , T ( 32838 , 12543 )

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜計算ミスにはご用心〜慶應義塾大学2023年総合政策学部第2問〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数$t \geq 0$に対して、関数 G(t) を次のように定義する。
$G(t)=\displaystyle \int_{t}^{ t+1 } |3x^2-8x-3|dx$
このとき、
(1)$0 \leqq t \lt \fbox{ア}$のときG(t)=$\fbox{イ}t^2+\fbox{ウ}t+\fbox{エ}$
(2)$\fbox{ア} \leqq t \lt \fbox{オ}$のとき$G(t)=\fbox{カ}t^3+\fbox{キ}t^2+\fbox{ク}t+\fbox{ケ}$
(3)$\fbox{オ} \leqq t$のとき$G(t)=\fbox{コ}t^2+\fbox{サ}t+\fbox{シ}$
である。また、G(t)が最小となるのは、$\dfrac{\fbox{ス}+\sqrt{\fbox{セ}}}{\fbox{ソ}}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問後編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜約数の個数から元の数を特定する難問〜慶應義塾大学2023年総合政策学部第1問前編〜約数の個数と素因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整数nの正の約数の個数をd(n)と書くことにする。たとえば、 10 の正の約数は1 , 2 , 5 , 10 であるから d(10)= 4 である。
( 1 ) 2023 以下の正の整数nの中でd(n)=5となる数は$\fbox{ア}$個ある。
( 2 ) 2023 以下の正の整数nの中でd(n)=15となる数は$\fbox{イ}$個ある。
( 3 ) 2023 以下の正の整数nの中でd(n) が最大となるのは$n=\fbox{ウ}$のときである。

2023慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜ベクトルの3項間漸化式だって?〜慶應義塾大学2023年商学部第3問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
平面上に3点$O,P_{1},P_{2}$が、$|\overrightarrow{OP_{1}}|=\sqrt{6}$,$|\overrightarrow{OP_{2}}|=\dfrac{\sqrt{30}}{5}$,$\overrightarrow{OP_{1}}\bot\overrightarrow{OP_{2}}$となるように与えられている。また、点Oから直線$P_{1}P_{2}$との交点をHとする。さらに平面上に点$P_{3},P_{4},P_{5}$,・・・を、n=1,2,3,・・・に対し、点$P_{n+2}$が点$P_{n}$tと$点P_{n+1}$を結ぶ線分$P_{n}P_{n+1}$を4:1に内分するように定める。
(1)$\overrightarrow{OP_{1}}$と$\overrightarrow{OP_{2}}$を使って、$\overrightarrow{OH}$を表すと$\overrightarrow{OH}=\fbox{(ア)}$である。
(2)$\overrightarrow{P_{1}P_{2}}$を使って、$\overrightarrow{HP_{n}}$をnを用いた式で表すと$\overrightarrow{HP_{n}}=\fbox{(イ)}$である。
(3)ベクトルを使わずに、$\overrightarrow{|OP_{n}|^2}$をnを用いた式で表すと$\overrightarrow{|OP_{n}|^2}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜2直線のなす角はtanの加法定理〜慶應義塾大学2023年商学部第2問〜2直線のなす角と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0,b \lt 0$とする。放物線C:$y=\dfrac{3}{2}x^2$上の点A(a,$\dfrac{3}{2}a^2$)と点B(b,$\dfrac{3}{2}b^2$)について、点Aと点Bにおける放物線の接線をそれぞれlとmで表し、その好転をPとする。
(1)lとmが直交するとき、交点Pのy座標は$-\dfrac{\fbox{ア}}{\fbox{イ}}$である。
(2)a=2で、$\angle APB=\dfrac{\pi}{4}$とする。このとき、bの値は$-\dfrac{\fbox{ウ}}{\fbox{エオ}}$である。
(3)b=-aで、$\angle APB=\dfrac{\pi}{3}$とする。この時、aの値は$\dfrac{\sqrt{\fbox{カ}}}{\fbox{キ}}$である。また、PAを半径、$\angle APB$を中心角として扇形PABが定まる。この扇形は放物線Cによって2つの図形に分割され、大きい図形の面積と小さい図形の面積の差は$\dfrac{\fbox{ク}}{\fbox{ケ}}\pi-\dfrac{\fbox{コ}\sqrt{\fbox{サ}}}{\fbox{シ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜三角形の面積をxで表したいが〜慶應義塾大学2023年商学部第1問(3)〜三角比の図形への応用

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜円と直線が共有点をもつ条件は〜慶應義塾大学2023年商学部第1問(2)〜円と直線の位置関係

単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)xy平面上において、点(4,3)を中心とする半径1の円とちょくせん$y=mx$が共有点を持つとき、
定数mの取り得る最大値は$\dfrac{\fbox{ウ}}{\fbox{エ}}+\dfrac{\fbox{オ}\sqrt{\fbox{カ}}}{\fbox{キク}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

この動画を見る 

福田の数学〜絶対落としたくないこの一題!〜慶應義塾大学2023年経済学部第6問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数の定数とする。また、xの関数$f(x)=x^3-ax+b$は
$a=\displaystyle \int_{-1}^{ 1 } \{\dfrac{3}{2}b|x^2+x|-f(x) \} dx$を満たすとする。
(1)bを、aを用いて表せ。
(2)y=f(x)で定まる曲線Cとx軸で囲まれた図形の面積Sを求めよ。なお、必要があれば$\alpha \lt \beta$を満たす実数$\alpha,\beta$に対して成り立つ公式
$a=\displaystyle \int_{\alpha}^{ \beta } (x-\alpha)^2(x-\beta) dx=-\dfrac{1}{12}(\beta-\alpha)^4$
を用いてもよい。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜立方体の平面による切断を考えよう〜慶應義塾大学2023年経済学部第5問〜立方体の平面による切断と体積の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xyz空間における 8 点 O ( 0 , 0 , 0 ), A ( 1 , 0 , 0 ), B ( 1 , 1 , 0 ), C( 0 , 1 , 0 ), D ( 0 , 0 , 1 ),E ( 1 , 0 , 1 ), F( 1 , 1 , 1 ), G(0 , 1 , 1 ) を頂点とする立方体 OABC-DEFG を考える。また、pと q はp> 1 ,q> 1 を満たす実数とし、 3 点 P, Q, R を P( p, 0 , 0 ), Q(0 , q , 0 ),R( 0 , 0 , $\dfrac{3}{2}$ )とする。
(1)a,bを実数とし、べクトル$\vec{n}$=( a , b , 1 )は 2 つのべクトル $\overrightarrow{ PQ },\overrightarrow{ PR }$の両方に垂直であるとする。a,bをp,qを用いて表せ。
以下では 3 点 P, Q, R を通る平面を$\alpha$とし、点 F を通り平面を$\alpha$とし、点Fを通り平面$\alpha$に垂直な直線をlとする。また、xy平面と直線lの交点のx座標が$\dfrac{2}{3}$であるとし、点 B は線分 PQ 上にあるとする。
(2)pおよびqの値を求めよ。
( 3 )平面と線分 EF の交点 M の座標、および平面と直線 FG の交点 N の座標を求めよ。
( 4 )平面で立方体 OABC - DEFG を 2 つの多面体に切り分けたとき、点 F を含む多面体の体積Vを求めよ。

2023慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。

2023慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜複雑な条件付き確率に挑戦しよう〜慶應義塾大学2023年経済学部第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]袋の中に、 1 から 9 までの数字を重複なく 1 つずっ記入したカ ー ドが 9 枚入ている。この袋からカ ー ドを 1 枚引き、カ ー ドに記入された数字を記録してから袋に戻すことを試行という。この試行を 5 回繰り返し行う。また、以下の (a), (b) に従い、各回の試行後の点数を定める。ただし、 1 回目の試行前の点数は 0 点とする。
(a) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いていない場合は、その回の試行前の点数にその回の試行で記録した数字を加える。
(b) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いている場合は、その回の試行前の点数にその回の試行で記録した数字を加え、さらに 1000 点を加える。

(1)3回の試行後の点数は23点であった。それまでに引いた3枚のカードに記入された数字は、小さい順に$\fbox{ア},\fbox{イ},\fbox{ウ}$である。これら3つの数字の文さんは$\dfrac{\fbox{エオ}}{\fbox{カ}}$である。
(2)4 回の試行後の点数が 23 点となる確率は$\dfrac{\fbox{キ}}{\fbox{クケコ}}$である。
(3)2 回の試行後の点数が 8 点または 1008点となる確率は$\dfrac{\fbox{サ}}{\fbox{シス}}$である。
(4)2 回の試行後の点数が 8 点または 1008 点であるとき、 5 回の試行後の点数が 2023 点となる条件付き確率は$\dfrac{\fbox{セソ}}{\fbox{タチツテ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜部分和と漸化式の扱い方〜慶應義塾大学2023年経済学部第2問〜部分和と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\{a_{n}\}$に対して$\displaystyle \sum_{k=1}^n a_k(n=1,2,3,・・・)$とし、さらに$S_0=0$と定める。$\{a_n\}$は$S_n=\dfrac{1}{4}-\dfrac{1}{2}(n+3)a_{n+1}$(n=0,1,2,・・・)を満たすとする。
(1)$a_1=\dfrac{\fbox{ア}}{\fbox{イ}}$である。また、$n \geqq 1$に対して$a_n=S_n-S_{n-1}$であるから、関係式$(n+\fbox{ウ})a_{n+1}=(n+\fbox{エ})a_n (n=1,2,3,・・・)$・・・(*)が得られる。数列$\{{b_n}\}$を$b_n=n(n+1)(n+2)a_n (n=1,2,3,・・・)$で定めると、$b_1=\fbox{オ}$であり、$n \geqq 1$に対して$b_{n+1}=\fbox{カ}b_n$が成り立つ。ゆえに$a_n=\dfrac{\fbox{キ}}{n(n+1)(n+2)}$が得られる。
次に、数列$\{{T_n}\}=\displaystyle \sum_{k=1}^n \dfrac{a_k}{(k+3)(k+4)}(n=1,2,3,・・・)$で定める。
(2)(*)より導かれる関係式
$\dfrac{a_k}{k+3}-\dfrac{a_{k+1}}{k+4}=\dfrac{\fbox{ク}a_k}{(k+3)(k+4)} (k=1,2,3,・・・)$
を用いると
$T_n=A-\dfrac{\fbox{ケ}}{\fbox{コ}(n+p)(n+q)(n+r)(n+s)}(n=1,2,3,・・・)$
が得られる。ただしここに$A=\fbox{サ}{シス}$であり、$p \lt q\lt r \lt s$として$p=\fbox{セ},q=\fbox{ソ},r=\fbox{タ},s=\fbox{チ}$である。
(3)不等式$|T_n-A| \lt\dfrac{1}{10000(n+1)(n+2)}$を満たす最小の自然数$nはn=\fbox{ツテ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜不定方程式の自然数解を求めよう〜慶應義塾大学2023年経済学部第1問(2)〜点対称と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 2 ) m,nを自然数とし、pを実数とする。平面上の点$(p,/\dfrac{p}{2})$に関して点(m,n)と対称な点が$(-3m^2-4mn+5m,n^2-3n-3)$であるとき、関係式$\fbox{ス}m^2+2(\fbox{セ}n-\fbox{ソ}m)+2(n+\fbox{タ})(n-\fbox{チ})=0$
が成り立つ。ゆえに$m=\fbox{ツ},n=\fbox{テ},p=\fbox{トナ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

大学入試問題#652「パット見余裕!」  慶應大学医学部(2001) 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ n^2+n+34 }$が整数となるような自然数$n$をすべて求めよ

出典:2001年慶應義塾大学 入試問題
この動画を見る 
PAGE TOP