明治大学 - 質問解決D.B.(データベース)

明治大学

#明治大学2023#定積分_24#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
0π3sin22xdx

出典:2023年明治大学
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P をcosPBA=33となるようにとる。このとき、 BP =である。線分 AB 上に A, B とは異なる点 Q をとり、x=AQ(0x2)とする。 PQ をxの式で表すと PQ =となる。また、三角形 BPQ の面積 s をxの式で表すと s =である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=である。また、0x2の範囲でxを動かすとき、Tが最大になるのはx=のときだけである。

2023明治大学理工学部過去問
この動画を見る 

福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
f(x)=18x2logx(x>0)とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)はx=で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式はy=である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積はである。また、点(t,f(t))(t<1)をPとし、点Aから点Pまでの曲線Cの長さをL(t)とするとL(2)=である。また、limt1+0L(t)t1=である。

2023明治大学理工学部過去問
この動画を見る 

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
DE=        OA+        OB, DF=        OA+        OC
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
DF=        DE+        DF
である。したがって、BG=        BC となる。
この動画を見る 

福田の数学〜くじ引きは神様が決めた順列〜明治大学2023年理工学部第1問(3)〜くじ引きの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (3)当たりくじ4本とはずれくじ6本からなる10本のくじがある。この中からAが2本のくじを同時に引き、その後Bが2本のくじを同時に引く。ただし、Aが引いたくじは元には戻さないものとする。
(a)Aの引いたくじが2本とも当たりである確率は        である。
(b)AとBが引いたくじの中に1本も当たりがない確率は        である。
(c)Aが引いたくじのうち1本だけが当たりで、かつBが引いたくじのうち1本だけが当たりである確率は        である。
(d)Bの引いたくじが2本とも当たりである確率は        である。
この動画を見る 

福田の数学〜相反方程式の扱い方を知っていますか〜明治大学2023年理工学部第1問(2)〜相反方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (2)(a)tを実数とする。xについての方程式x+1x=t が実数解をもつための必要十分条件はt    またはt     である。
(b)kを実数と定数とし、f(x)=7x4+2x3+kx2+2x+7 とする。
x=af(x)=0 の解であるとき、t=a+1a とおくと
    t2+    t+(k    )=0
が成り立つ。方程式f(x)=0 の異なる実数解の個数が3個となるようなkの値はk=     である。
この動画を見る 

福田の数学〜微分可能である条件とは何か〜明治大学2023年理工学部第1問(1)〜微分可能であるための条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (1)a,b,cを実数の定数とし、関数f(x)
f(x)={1+3xacos2x4x (x>0)bx+c       (x0)
で定める。f(x)x=0で微分可能であるとき
a=    , b=        , c=        
である。
この動画を見る 

福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を(x,y)とすると、x,yは次の方程式を満たす。
y4+    y2+(    )2=16 ...(1)
方程式(1)が表す曲線をCとする。Cの概形を描くことにしよう。まず、曲線Cx軸との共有点のx座標は    ±        である。次に、(1)をy2に関する2次方程式とみて解けば、y2≧0 であるので、
y2=    +4     ...(2)
となり、またxのとりうる値の範囲は
        x        
となる。x≧0, y≧0とすれば、方程式(2)は0≦x        を定義域とするxの関数yを定める。このとき、0<x    のとき共有点はなく、0≦a    のとき共有点がある。
共有点の個数は、a=0のとき    個、0<a<    のとき    個、a=    のとき    個となる。
                の解答群
x2+1 ①(x2+1) ②x21 ③(x21) ④x2+4 

2(x2+4) ⑥x24 ⑦2(x24) ⑧(x2+4) ⑨2(x24) 
この動画を見る 

福田の数学〜双曲線と直線の位置関係を考えよう〜明治大学2023年全学部統一Ⅲ第3問〜双曲線と直線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 座標平面上の双曲線x2-4y2=5をCとおき、点(1,0)を通り傾きmが正となる直線をlとおく。Cの漸近線はy=        xy=        xである。また、lCの共有点がただ1つとなるのは、m        または         のときである。
m=        ならばlCの接線となる。ここでa=         とおく。m<aであるときに、lCの共有点のy座標のうち最大のものをymとすれば、
ym=m        m2(    +        m2)
となる。このとき、limma0ym=     が成り立つ。
この動画を見る 

福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
2 t>0 に対して、次の2つの定積分を考える。
I=0π2etxsinxdx, J=0π2etxcosxdx
部分積分を用いればI=    tJ, J=    +tI が成り立つことが分かるので、
I=        , J=        
を得る。したがって、limtlog    t=0 を用いれば、
limt1tlog(0π2etxcosxdxt    )=    
となる。
            の解答群
⓪-1 ①1 ②2-π ③π ④1-t ⑤1+t 
⑥1-t2 ⑦1+t2 ⑧eπ2t ⑨eπ2t 
        の解答群
t ①1 ②-1teπ2t ③-1+teπ2t ④1teπ2t 
⑤1+teπ2t ⑥-t-eπ2t ⑦-t+eπ2t ⑧t-eπ2t ⑨t+eπ2t
    の解答群
⓪0 ①π2 ②π3 ③π4 ④π6 ⑤π12 ⑥π6 
π4 ⑧π3 ⑨π2 
この動画を見る 

福田の数学〜zを正負で場合分けできないときどうする〜明治大学2023年全学部統一Ⅲ第1問(2)〜複素数に関する2次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (2)複素数zの方程式
z2-3|z|+2=0
を考える。この方程式は    個の解を持ち、このうち実数でないかの個数は    個である。
この動画を見る 

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

n=1log(n+1)(n+2)n(n+3)

の和を求めよ。

2023明治大学過去問
この動画を見る 

福田の数学〜共通テスト対策にもってこい〜明治大学2023年全学部統一ⅠⅡAB第3問〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#空間における垂直と平行と多面体(オイラーの法則)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 一辺の長さが6の正四面体ABCDにおいて、点Aから3点B,C,Dを含む平面に垂線AHを下ろす。また、辺ABを1:2に内分する点をP、辺ACを2:1に内分する点をQ、辺ADをt:1-tに内分する点をRとする。ただし、
0<t<1 とする。
(1)AHの長さは         であり、正四面体ABCDの体積は         である。
(2)AHと三角形PQRの交点をXとすると、AX=    AH である。
(3)三角形PQRの面積は    t2    t+     である。
(4)t=12 のとき、四面体APQRの体積は        で、点Aから3点P,Q,Rを通る平面に垂線AYを下ろすと、AYの長さは             である。
この動画を見る 

福田の数学〜微分積分の基本問題〜明治大学2023年全学部統一ⅠⅡAB第2問〜関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 kを正の実数とし、xの関数f(x)
f(x)=x33kx2+9(k2+2k3)
により定める。関数f(x)x=    で極大値    k2+    k-    をとり、
x=    で極小値    k3+    k2+    k-     をとる。
以下、f(x)の極小値が0になるkの値をa,b(ただし、a<b)、f(x)の極大値が0となるkの値をcとする。このとき、
a=    (        )    , b=    , c=    
である。座標平面において、k=    のとき、x軸のx≧0の部分とy軸のy≧0 の部分とy=f(x)のグラフとで囲まれた図形の面積は    である。
方程式f(x)=0 が異なる3つの実数解を持つための必要十分条件は    である。

    ,     の解答群
⓪0 ①k2 ②2k3 ③k ④4k3 
2k ⑥k2 ⑦2k3 ⑧k ⑨2k 

    の解答群
k<a, b<k<c ①k<a, c<k<b ②k<c, a<k<b 
a<k<b, c<k ④a<k<c, b<k ⑤c<k<a, b<k 
a<k<c ⑦c<k<a ⑧b<k<c ⑨c<k<b 
この動画を見る 

福田の数学〜中学生でも解ける大学入試問題〜明治大学2023年全学部統一ⅠⅡAB第1問(5)〜共通弦の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(5)原点をOとする座標平面上に点Aと点Bがある。点Aの座標は(40,0)であり、
点BはOB=37, AB=13 を満たす。この座標平面上でOBを直径とする円をC1とし、ABを直径とする円をC2とする。このとき、C1C2の交点を結ぶ線分の長さは    である。
この動画を見る 

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数m,nがあり、1<m<nとする。

(m+1n)(n+1m)12

を満たす(m,n)を求めよ。

2023明治大学過去問
この動画を見る 

福田の数学〜消去法の活用〜明治大学2023年全学部統一ⅠⅡAB第1問(3)〜データの分析中央値と平均

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(3)データAの大きさは15であり、データAの値は1,2,3,4,5のいずれかであるとする。
1,2,3,4,5のそれぞれを階級値であると考えたとき、その度数はどれも1以上であるとする。階級値1の度数が2、データAの中央値が2、データAの平均値がちょうど3であるとき、階級値5の度数は    である。
この動画を見る 

福田の数学〜虚数係数の2次方程式の解き方〜明治大学2023年全学部統一ⅠⅡAB第1問(2)〜

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
(2)kを実数とする。xについての方程式
x2-(4-3i)x+(4-ki)=0
を満たす実数xがあるとき、k=    である。このとき、上の等式を満たすxの値は2つあり、        -    i である。ただし、iを虚数単位とする。
この動画を見る 

福田の数学〜誘導付き3項間の漸化式を解く〜明治大学2023年全学部統一ⅠⅡAB第1問(1)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
an+2=4(an+1an)(n=1,2,3,...)
a1=2,a2=16
(1)bn=an+12an(n=1,2,3,...)と置いてbnを求めよ。
(2)anを求めよ。

2023明治大学全統過去問
この動画を見る 

基本問題 明治大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学過去問題
ab(6)=123(a)
a,bの値を求めよ
この動画を見る 

整数問題 明治大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学 過去問

nを自然数とする.
9n5+15n4+10n34n
が30の倍数であること示せ
この動画を見る 

明治大 三次不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x32ax2x<0
これを解け.

明治大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率はである。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率はである。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率はである。

2020明治大学理工学部過去問
この動画を見る 

大学入試問題#312 明治大学2021 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
limk01ekx1ekx+1

出典:2021年明治大学 入試問題
この動画を見る 

大学入試問題#309 明治大学 改 (2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
0π6cos5x dx

出典:2013年明治大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、OA, OC, ODのどの
2つのなす角もπ3であるとする。
(1)OFOA, OC, ODを用いて表すと、
OF=である。
(2)|OF|, cosAOFを求めると|OF|=,
 cosAOF=である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積はである。
(4)対角線OF上に点Pをとり、|OP|=tとおく。点Pを通り、OFに垂直な平面
をHとする。平行六面体OABCDEFGを平面Hで切った時の断面が六角形
となるようなtの範囲はである。このとき、平面Hと辺AEの交点をQ
として、|AQ|をtの式で表すと|AQ|=である。
また、|PQ|2tの式で表すと
|PQ|2=|OQ|2|OP|2=
である。
(5)平行六面体OABCDEFGを、直線OFの周りに1回転してできる回転体
の体積はである。

2022明治大学理工学部過去問
この動画を見る 

大学入試問題#305 明治大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
limhlog(1+5h+6h2)h

出典:2013年明治大学 入試問題
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、AP=t (0<t<3)を満たす点Pをとる。
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。
α=OAB, β=OBA
とおく。tanα, tanβ,tan(α+β)tで表すと、
tanα=, tanβ=,
 tan(α+β)=である。
0<α+β<π2であるようなtの範囲はである。
tはの範囲にあるとする。点A, Bから円Oに引いた接線の接点のうち、
PでないものをそれぞれQ, Rとすると、QAB+RBA<πである。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと である。
また、tの範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲はである。

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)f(x)=(logx)2+2logx+3として、座標平面上の曲線y=f(x)Cとする。
ただし、logxxの自然対数を表し、eを自然対数の底とする。
(a)関数f(x)x=eのとき最小値をとる。
(b)曲線Cの変曲点の座標は(, )である。
(c)直線y=と曲線Cで囲まれた図形の面積は
e2である。
(d)aを実数とする。曲線Cの接線で、点(0, a)を通るものがちょうど1本あるとき、
aの値はである。
(e)bを実数とする。曲線Cの2本の接線が点(0, b)で垂直に交わるとき、
bの値はである。

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)座標平面上の曲線x2+2xy+2y2=5Cとする。
(a)直線2x+y=tが曲線Cと共有点をもつとき、実数tの取り得る値の範囲は
tである。
(b)直線2x+y=1が曲線Cx0の範囲で共有点を少なくとも1個もつとき、
実数t の取り得る値の範囲は12tである。

2022明治大学理工学部過去問
この動画を見る 
PAGE TOP preload imagepreload image