学校別大学入試過去問解説(数学)
【東京大学2007[6]】不等式の証明、log2の評価
三項間漸化式 兵庫県立大
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
この動画を見る
$a_1=1,a_2=3$
$a_{n+2}-4a_{n+1}+4a_n=1$
一般項を求めよ.
兵庫県立大過去問
一橋大 整式の剰余
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
この動画を見る
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
3次関数 三角形の面積最大 お茶の水女子大
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
この動画を見る
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
【数B】数列:京大数学を5分以内に解説! 先頭から順に1~nの番号がついたn両編成の列車がある。 各車両を赤青黄のいずれか1色で塗るとき、隣合った車両の少なくとも一方が赤となる色の塗り方は?
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
この動画を見る
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
京都大 三次方程式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.
1967京都大(文理共通)過去問
この動画を見る
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.
1967京都大(文理共通)過去問
特性方程式て何だよ!漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.
北海学園大過去問
この動画を見る
$a_1=1,a_2=b,a_4=20$
$a_{n+2}=4a_{n+1}-4a_n$
一般項を求めよ.
北海学園大過去問
福岡教育大 指数関数の最小値 微分
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ
出典:2005年福岡教育大学 過去問
この動画を見る
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ
出典:2005年福岡教育大学 過去問
青山学院大 2数の積の総和
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$1,2…n$の中から異なる2つの数をとって積をつくるとき、それらの積の総和を求めよ
$(n \geqq 2)$
出典:2005年青山学院大学 過去問
この動画を見る
自然数$1,2…n$の中から異なる2つの数をとって積をつくるとき、それらの積の総和を求めよ
$(n \geqq 2)$
出典:2005年青山学院大学 過去問
関西学院大 漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$
一般項を求めよ
{$a_n$}の最大値とそれを与える$n$を求めよ
出典:2005年関西学院大学 過去問
この動画を見る
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$
一般項を求めよ
{$a_n$}の最大値とそれを与える$n$を求めよ
出典:2005年関西学院大学 過去問
上智大 関数の最大最小
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
この動画を見る
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
佐賀大 三次関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ
出典:2005年佐賀大学 過去問
この動画を見る
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ
出典:2005年佐賀大学 過去問
名古屋市立大 3次方程式が相違3実数解を持つ条件
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-kx+k=0$が相異なる3つの実数解をもつ$k$の範囲を求めよ
出典:名古屋市立大学 過去問
この動画を見る
$x^3-kx+k=0$が相異なる3つの実数解をもつ$k$の範囲を求めよ
出典:名古屋市立大学 過去問
東邦(医)三角関数 最大値
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2\sin x\cos x+3\sqrt{ 2 }(\cos x+\sin x)$の最大値を求めよ
出典:東邦大学医学部 過去問
この動画を見る
$2\sin x\cos x+3\sqrt{ 2 }(\cos x+\sin x)$の最大値を求めよ
出典:東邦大学医学部 過去問
2020年東大 ヨビノりたくみさん解説
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$
条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ
$b$を$a$で表せ
$a$の範囲を求めよ
出典:2020年東京大学 過去問
この動画を見る
$a \gt 0,b \gt 0$
$C:y=x^3-3ax^2+b$
条件1 $C$は$x$軸に接する
条件2 $x$軸と$C$で囲まれた領域(除く境界)に格子点1つのみ
$b$を$a$で表せ
$a$の範囲を求めよ
出典:2020年東京大学 過去問
東京薬科大 数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ
出典:東京薬科大学 過去問
この動画を見る
$1,11,111,1111,…$
第$n$項と初項から第$n$項までの和を求めよ
出典:東京薬科大学 過去問
慶応義塾大 極限値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{\displaystyle \frac{3}{2}}}\displaystyle \sum_{k=1}^n k^{\displaystyle \frac{1}{2}}$
出典:慶應義塾大学 過去問
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{\displaystyle \frac{3}{2}}}\displaystyle \sum_{k=1}^n k^{\displaystyle \frac{1}{2}}$
出典:慶應義塾大学 過去問
順天堂大(医)等比数列の和の収束
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束
{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ
出典:順天堂大学医学部 過去問
この動画を見る
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束
{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ
出典:順天堂大学医学部 過去問
2020年 大阪大 確率漸化式
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない
$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ
(2)
$P_{n+1}$を$P_n$で表せ
(3)
$P_n$を求めよ
出典:2020年大阪大学 過去問
この動画を見る
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない
$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ
(2)
$P_{n+1}$を$P_n$で表せ
(3)
$P_n$を求めよ
出典:2020年大阪大学 過去問
山梨大 複素数の4乗根
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$
出典:山梨大学 過去問
この動画を見る
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$
出典:山梨大学 過去問
日大(医)極限値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師:
問題文全文(内容文):
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$
出典:日本大学医学部 過去問
この動画を見る
$\displaystyle \lim_{ n \to \pi } \displaystyle \frac{\sin x+\sin3x+…+\sin(2x-1)x}{x-\pi}$
出典:日本大学医学部 過去問
東京医科大 極限値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=7n^2+n(n$自然数$)$
$\displaystyle \lim_{ n \to \infty } log(\displaystyle \frac{a_{n+1}-6}{a_n})^{9n}$
出典:東京医科大学 過去問
この動画を見る
$a_n=7n^2+n(n$自然数$)$
$\displaystyle \lim_{ n \to \infty } log(\displaystyle \frac{a_{n+1}-6}{a_n})^{9n}$
出典:東京医科大学 過去問
杏林大(医)極限値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ \cos5x }-\sqrt{ \cos3x }}{x^2}$
出典:杏林大学医学部 過去問
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ \cos5x }-\sqrt{ \cos3x }}{x^2}$
出典:杏林大学医学部 過去問
福井大 積分
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福井大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3x^2+ax+b$
$f(3)=f'(3)=0$
$f(x)$と$x$軸とで囲まれた面積を求めよ
出典:2000年福井大学 過去問
この動画を見る
$f(x)=x^3-3x^2+ax+b$
$f(3)=f'(3)=0$
$f(x)$と$x$軸とで囲まれた面積を求めよ
出典:2000年福井大学 過去問
指数方程式 指数公式 杏林大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$4^x-1=2^{x-\displaystyle \frac{1}{2}}$
出典:杏林大学 過去問
この動画を見る
$4^x-1=2^{x-\displaystyle \frac{1}{2}}$
出典:杏林大学 過去問
福井大 2次方程式と複素平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
お茶の水女子大 多項式の展開
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ
出典:2000年お茶の水女子大学 過去問
この動画を見る
$(1+x+x^2+x^3+…+x^m)^n$
$0 \leqq k \leqq m$ $n \geqq 1$
$x^k$の係数を求めよ
出典:2000年お茶の水女子大学 過去問
九州大 三次方程式と無理数
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$
(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ
(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ
(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ
出典:2000年九州大学 過去問
この動画を見る
$z=\cos2 0^{ \circ }+i \sin20^{ \circ }$
$\alpha=z+\bar{ z }$
(1)
$\alpha$を解に持つ整数、係数の3次方程式を求めよ
(2)
(1)で求めた方程式は相異なる3つの実数解をもち、それらはすべて無理数となることを示せ
(3)
$\alpha$を解にもつ有理数係数の2次方程式はないことを示せ
出典:2000年九州大学 過去問
横浜国大 三角方程式 4倍角
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$1-2\cos 3\theta+\cos4\theta=0$
解の個数を求めよ
出典:2000年横浜国立大学 過去問
この動画を見る
$0 \leqq \theta \lt 2\pi$
$1-2\cos 3\theta+\cos4\theta=0$
解の個数を求めよ
出典:2000年横浜国立大学 過去問
山梨大 2次方程式と複素数平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問